Fe(III) complexes as photocatalysts for photopolymerization reactions, hydrogels preparation and copolymerization

Autores

  • Yasmin de Morais Shimizo unesp Autor
  • Camila Bignardi UNESP Autor
  • Naralyne Martins Pesqueira UNESP Autor
  • Valdemiro Pereira de Carvalho Junior Autor
  • Beatriz Eleutério Goi UNESP Autor

Palavras-chave:

iron, Schiff bases, Photocontrolled Radical Polymerization, water-soluble.

Resumo

Light-activated polymerization offers a sustainable, energy-efficient alternative to conventional thermal processes by significantly reducing energy consumption. In this context, iron-based catalysts stand out for their low toxicity, affordability, natural abundance, and biocompatibility, making them excellent candidates for green photochemical applications.

This study investigates Fe(III) complexes bearing symmetric Schiff base ligands as photocatalysts for the Controlled Radical Photopolymerization (CRP2) of methyl acrylate (MA). Reactions were carried out under 365 nm LED irradiation using a tricomponent system (Fe(III), EDB, and Ph-Br), achieving efficient polymerization and good control over molecular architecture.

The water solubility of these complexes also enabled the polymerization of 2-hydroxyethyl methacrylate (HEMA), yielding  hydrogels with high water content, essential features for biomedical applications.

Additionally, these systems were employed in the synthesis of block copolymers (PHEMA-β-PBA), further demonstrating the versatility of Fe(III)-based photocatalysts in the development of advanced, sustainable polymeric materials.

Referências

1. T. P. Yoon; M.A. Ischay; J. Du, Nature Chemistry 2, 2010, 7 527–32.

2. M. Van De Walle; C. Petit; J. P. Blinco; C. Barner-Kowollik, Polym. Chem., 2020, 11, 6435–6440.

3. F. Dumur, Eur. Polym. J., 2023, 186.

4. V. Ferraro, C.R. Adam, A. Vranic, S. Bräse, Advanced Functional Materials, 2024, 20, 34.

5. T. Pirman, M. Ocepek, B. Likozar, Industrial & Engineering Chemistry Research, 2021, 26, 9347–9367.

6. X. He, L. Zang, Y. Xin, Y. Zou, Applied Research, 2023, 6, 2.

7. B. Aubry, F. Dumur, M. Lansalot, E. Bourgeat-Lami, E. Lacote, J. Lalevée, M. Díez-Pascual, E. Lacôte, Macromol, 2022.

8. G. Lu, R. Tang, J. Nie, X. Zhu, Macromol Rapid Commun, 2024, 45.

9. H. Chen, M. Vahdati, P. Xiao, F. Dumur, J. Lalevée, Polymers, 2021, 13.

10. A. Muñoz-Bonilla; O. León; M. L. Cerrada; J. Rodríguez-Hernández; M. Sánchez-Chaves; M. Fernández-García. Journal of Polymer Science, 2012, 13, 50.

11. X. Pan; N. Malhotra; J. Zhang; K. Matyjaszewski, Macromolecules, 2015, 48, 6948.

12. K. Mounika, A. Pragathi, C. Gyanakumari, Journal of Scientific Research, 2010, 2, 513.

13. A. L. R. Silva, J. M. Gonçalves, V. M. F. Morais, M. D. M. C. R. Silva, Thermochim Acta, 2021, 695, 178817. https://doi.org/10.1016/j.tca.2020.178817.

Downloads

Publicado

31-10-2025

Edição

Seção

Eletrocatálise e fotocatálise