Green Hydrogen Evolution Using Metal Active Center Electrocatalysts Stabilized by N-Doped Carbon Scaffolds

Autores

  • Izadora Fonseca Reis Universidade Federal de São Carlos Autor https://orcid.org/0000-0002-3242-7178
  • Gabriel Ali Diab Universidade Federal de São Carlos Autor
  • Luis Fernando Guimarães Noleto Universidade Federal de São Carlos Autor
  • Bruna Rocha Serino Universidade Federal de São Carlos Autor
  • Ivo Freitas Teixeira Universidade Federal de São Carlos Autor
  • Pablo Jimenez Calvo Friedrich-Alexander-Universität Erlangen-Nürnberg Autor

Palavras-chave:

Nitrogen-doped carbon, Cobalt, Electrocatalysts, Green hydrogen

Resumo

In the pursuit of sustainable hydrogen production, nitrogen-doped carbon materials have emerged as promising electrocatalysts due to their tunable structure and abundant active sites. This study reports the synthesis of a sodium-based nitrogen-doped carbon (Na-NC) and its modification via metal cation exchange (Ni, Mg, Fe, Co, and Cu). Among the resulting catalysts, Co-NC showed the earliest onset potential (-0.78 V vs RHE) and highest current density (-30 mA cm-2 at -0.9 V vs RHE) for alkaline HER. Multiple analyses were performed to determine key properties. For Co-NC, linear correlations indicated the lowest charge transfer resistance, smallest Tafel slope (faster kinetics), and well-dispersed Co clusters, confirmed by STEM elemental mapping. All composites showed typical C-C vibrational modes in FTIR and multi-step decomposition in TGA. XRD revealed a broad peak at 27°, consistent with an amorphous graphitic structure. Compared to Na-NC, metal exchange improved HER activity, suggesting that cation exchange is a simple and versatile method to enhance NC-based materials. The materials show promising electrochemical activity applicable to other energy-related reactions.

Biografia do Autor

  • Izadora Fonseca Reis, Universidade Federal de São Carlos

    I hold a Bachelor's degree in Chemistry from the Federal University of Itajubá (UNIFEI), completed in 2016. In 2019, I obtained my Master’s degree in Chemistry through the Multicenter Graduate Program in Chemistry of Minas Gerais, where my research focused on the synthesis of lanthanide complexes with spiropyrans and the study of their electronic properties. This research was conducted at the Laboratory of Polymeric and Supramolecular Systems, also at UNIFEI. I completed my Ph.D. in 2023 through the Graduate Program in Chemistry at the Institute of Chemistry of São Carlos (IQSC) at the University of São Paulo (USP). During my doctoral studies, I was a member of the Molecular Fluorescence Group (GFM), and my research centered on single-molecule level studies. This involved experiments using total internal reflection wide-field microscopy (TIRF) to evaluate the in situ catalytic activity of Suzuki–Miyaura cross-coupling reactions.
    Currently, I am a postdoctoral researcher in the Department of Chemistry at the Federal University of São Carlos (UFSCar), working in the LabIvo research group. My research focuses on the development of highly efficient single-atom catalysts (SACs), based on nitrogen-doped carbon materials and crystalline carbon nitrides, with catalytic applications. In particular, I study reactions such as carbon dioxide (CO2) and nitrogen (N2) reduction, methane reduction, and hydrogen evolution. During my postdoctoral research at UFSCar, I spent three months in 2024 as a visiting researcher at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in Germany. There, I worked with materials such as nitrogen-doped carbon, and polymeric and crystalline carbon nitrides, applied in electrochemical and photoelectrochemical experiments for water splitting.

Referências

1. Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, D. Zhao, F. Xiao, X. Zhu, Y. Zeng, M. Shao, S. Chen, G. Wu, J. Zeng, and C. Wang, Chemical Reviews 120, 12217 (2020).

2. C. Wang, W. Guo, T. Chen, W. Lu, Z. Song, C. Yan, Y. Feng, F. Gao, X. Zhang, Y. Rao, L. Qian, S. Xu, G. Huang, Y. Zheng, W. Yan, and J. Zhang, Coordination Chemistry Reviews 514, 215899 (2024).

3. W. Zhang, R. Xi, Y. Li, Y. Zhang, P. Wang, and D. Hu, International Journal of Hydrogen Energy 47, 32436 (2022).

4. C. Wang, Z. Wang, H. Wang, Y. Chi, M. Wang, D. Cheng, J. Zhang, C. Wu, and Z. Zhao, International Journal of Hydrogen Energy 46, 9030 (2021).

5. Y. Yang, J. Su, P. Jiang, J. Chen, L. Hu, and Q. Chen, Chinese Journal of Chemistry 39, 2626 (2021).

6. J. Yin, Q. Fan, Y. Li, F. Cheng, P. Zhou, P. Xi, and S. Sun, Journal of the American Chemical Society 138, 14546 (2016).

7. W. Pei, S. Zhou, Y. Bai, and J. Zhao, Carbon 133, 260 (2018).

8. Y. Zhu, J. Su, J. Liao, H. Peng, Z. Wang, Y. Wang, W. Wang, M. Luo, S. Li, and W. Li, Next Materials 6, 100491 (2025).

9. G. F. S. R. Rocha, M. A. R. da Silva, A. Rogolino, G. A. A. Diab, L. F. G. Noleto, M. Antonietti, and I. F. Teixeira, Chemical Society Reviews 52, 4878 (2023).

10. H. Hou, C. R. Bowen, D. Yang, and W. Yang, Chem 10, 800 (2024).

11. J. Verma and S. Goel, International Journal of Hydrogen Energy 47, 38964 (2022).

12. Z. Shi, W. Yang, Y. Gu, T. Liao, and Z. Sun, Advanced Science 7, 2001069 (2020).

13. M. L. M. Oliveira, C. M. A. C. Alves, C. F. Andrade, D. C. S. de Azevedo, F. L. Lobo, A. Fuerte, P. Ferreira-Aparicio, C. Caravaca, and R. X. Valenzuela, ACS Omega 10, 3282 (2025).

14. Z.-d. Wang, T. Xia, Z.-h. Li, and M.-f. Shao, New Carbon Materials 39, 67 (2024).

15. M. A. Qadeer, X. Zhang, M. A. Farid, M. Tanveer, Y. Yan, S. Du, Z.-F. Huang, M. Tahir, and J.-J. Zou, Journal of Power Sources 613, 234856 (2024).

16. Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M. G. Willinger, E. Willinger, D. Neher, M. Antonietti, and D. Dontsova, Advanced Materials 29, 1700555 (2017).

17. W. V. F. do Carmo Batista, W. L. de Oliveira, E. F. de Oliveira, T. S. Cruz, J. L. Ferrari, B. S. Archanjo, S. Grigoletto, D. E. da Costa Ferreira, F. V. Pereira, G. A. A. Diab, V. R. Mastelaro, I. F. Teixeira, and J. P. de Mesquita, ChemCatChem 16, e202400400 (2024).

18. M. A. R. da Silva, G. F. S. R. Rocha, G. A. A. Diab, C. S. Cunha, V. G. S. Pastana, and I. F. Teixeira, Chemical Engineering Journal 460, 141068 (2023).

19. A. A. Diab G, F. Reis I, Wang C, Barreto D, Savateev O, and F. T. I. ChemRxiv, 2025.

20. H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li, E. L. G. Samuel, and J. M. Tour, ACS Applied Materials & Interfaces 7, 8083 (2015).

21. R. Sun, X. Huang, J. Jiang, W. Xu, S. Zhou, Y. Wei, M. Li, Y. Chen, and S. Han, Dalton Transactions 51, 15205 (2022).

22. P. M. De Wolff, Acta Crystallographica 6, 359 (1953).

23. S.-H. Song, J. A. Alonso, M. T. Fernández-Díaz, and S. H. Lim, European Journal of Inorganic Chemistry 2017, 2289 (2017).

Downloads

Publicado

31-10-2025

Edição

Seção

Eletrocatálise e fotocatálise