Tuning Time, Boosting Performance: Optimizing Crystallinity in Poly(Heptazine Imide) for Efficient Hydrogen Evolution

Autores

  • Luis Fernando Guimarães Noleto Universidade Federal de São Carlos Autor https://orcid.org/0000-0002-8146-4194
  • Izadora Farias Reis Universidade Federal de São Carlos Autor
  • Ivo Freitas Teixeira Universidade Federal de São Carlos Autor

Palavras-chave:

Crystalline carbon nitride, Photocatalytic hydrogen evolution, Poly(heptazine imide)

Resumo

The synthesis of highly crystalline carbon nitrides is essential to enhance their photocatalytic properties. In this study, poly(heptazine imide) (PHI) samples were synthesized by varying the thermal treatment time (2, 3, 4, 6, and 8 h) and applied in the hydrogen evolution reaction. The material synthesized for 4 h (Na-PHI-4) showed the best performance, with a hydrogen production rate of 3151.9 µmol g-1 h-1 and an apparent quantum yield of 3.09%. XRD, UV-Vis, and photoluminescence analyses indicated that this material exhibited higher crystallinity, improved light absorption, and lower charge carrier recombination. Short synthesis times led to mixed phases and structural defects, while longer times caused slight thermal degradation and new defects. Therefore, synthesis time is a key factor in controlling crystallinity and optimizing the photocatalytic activity of PHI.

Referências

[1] F. Fina, S. K. Callear, G. M. Carins, J. T. Irvine, Chemistry of Materials 2015, 27, 2612; Y. Wang, S. Z. F. Phua, G. Dong, X. Liu, B. He, Q. Zhai, Y. Li, C. Zheng, H. Quan, Z. Li, Chem 2019, 5, 2775.

[2] Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M. G. Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, Advanced Materials 2017, 29, 1700555.

[3] M. A. R. da Silva, I. F. Silva, Q. Xue, B. T. W. Lo, N. V. Tarakina, B. N. Nunes, P. Adler, S. K. Sahoo, D. W. Bahnemann, N. López-Salas, A. Savateev, C. Ribeiro, T. D. Kühne, M. Antonietti, I. F. Teixeira, Applied Catalysis B: Environmental 2022, 304, 120965; M. A. R. da Silva, N. V. Tarakina, J. B. G. Filho, C. S. Cunha, G. F. S. R. Rocha, G. A. A. Diab, R. A. Ando, O. Savateev, I. Agirrezabal-Telleria, I. F. Silva, S. Stolfi, P. Ghigna, M. Fagnoni, D. Ravelli, P. Torelli, L. Braglia, I. F. Teixeira, Advanced Materials 2023, 35, 2304152.

[4] M. A. R. da Silva, G. F. S. R. Rocha, G. A. A. Diab, C. S. Cunha, V. G. S. Pastana, I. F. Teixeira, Chemical Engineering Journal 2023, 460, 141068.

[5] L. Lin, W. Ren, C. Wang, A. M. Asiri, J. Zhang, X. Wang, Applied Catalysis B: Environmental 2018, 231, 234.

[6] D. Burmeister, J. Müller, J. Plaickner, Z. Kochovski, E. J. W. List-Kratochvil, M. J. Bojdys, Chemistry – A European Journal 2022, 28, e202200705.

[7] H. Schlomberg, J. Kröger, G. Savasci, M. W. Terban, S. Bette, I. Moudrakovski, V. Duppel, F. Podjaski, R. Siegel, J. Senker, R. E. Dinnebier, C. Ochsenfeld, B. V. Lotsch, Chemistry of Materials 2019, 31, 7478.

[8] W. Wang, Z. Shu, J. Zhou, H. Tang, T. Li, D. Meng, ACS Applied Materials & Interfaces 2022, 14, 41131.

[9] Z. Pan, M. Zhao, H. Zhuzhang, G. Zhang, M. Anpo, X. Wang, ACS Catalysis 2021, 11, 13463; G. Zhang, Y. Xu, J. Zhu, Y. Li, C. He, X. Ren, P. Zhang, H. Mi, Applied Catalysis B: Environmental 2023, 338, 123049.

[10] H. Zhang, A. Yu, The Journal of Physical Chemistry C 2014, 118, 11628; F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, E. Kan, The Journal of Physical Chemistry Letters 2012, 3, 3330.

[11] L. Jiang, J. Yang, X. Yuan, J. Guo, J. Liang, W. Tang, Y. Chen, X. Li, H. Wang, W. Chu, Advances in Colloid and Interface Science 2021, 296, 102523.

[12] X. Yuan, K. Luo, K. Zhang, J. He, Y. Zhao, D. Yu, The Journal of Physical Chemistry A 2016, 120, 7427; A. Savateev, D. Dontsova, B. Kurpil, M. Antonietti, Journal of Catalysis 2017, 350, 203.

[13] K. Akaike, A. Hosokai, H. Nagashima, Q. Wei, T. Hosokai, Physical Chemistry Chemical Physics 2022, 24, 17504.

[14] J. Lin, W. Tian, H. Zhang, H. Sun, S. Wang, Accounts of Chemical Research 2024, 57, 2303.

[15] G. Zhang, A. Savateev, Y. Zhao, L. Li, M. Antonietti, Journal of Materials Chemistry A 2017, 5, 12723.

[16] Y. Zhang, N. Cao, X. Liu, F. He, B. Zheng, C. Zhao, Y. Wang, Science China Materials 2023, 66, 2274; T. R. Stara, S. Y. Kuchmiy, Theoretical and Experimental Chemistry 2022, 58, 240.

[17] E. Mitchell, A. Law, R. Godin, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021, 49, 100453.

[18] Q. Li, R. Yang, Z. Ma, S. Liu, D. Li, D. Tian, D. Jiang, ChemSusChem 2025, 18, e202402000.

Downloads

Publicado

31-10-2025

Edição

Seção

Síntese e caracterização de catalisadores e adsorventes