Síntese, caracterização e aplicação de catalisadores à base de Cu, Ce e Zr na reação RWGS
Palavras-chave:
RWGS, cobre, cério, zirconiaResumo
As drásticas mudanças climáticas causadas pelo agravamento do efeito estufa vêm se intensificando ao longo das últimas décadas. Uma rota viável para reduzir essa problemática é a conversão catalítica do CO2 oriundo de fontes fixas transformando-o em produtos de valor para a indústria química. Neste trabalho, estudou-se a conversão de CO2 em CO por meio da reação de deslocamento gás-água reversa (RWGS), visando o desenvolvimento de catalisadores mais ativos e seletivos. Foram sintetizados catalisadores à base de cobre, cério e zircônio, pelo método da coprecipitação, com teores variados de Cu, representados como %CuCeZr (% = 30, 50, 70% de CuO), fixando em 50% a proporção entre os óxidos de Ce/Zr. Também foi preparado um catalisador 30CuZr (30% CuO, 70% ZrO2) para fins de comparação. Para caracterizá-los, utilizaram-se as técnicas DRX, ICP-OES, área BET, TPR-H2, TPD-CO2 e para avaliação na RWGS realizaram-se testes catalíticos com pré-tratamento redutor em reator de leito fixo. Os resultados indicaram que o 30CuCeZr apresentou o melhor desempenho, associado ao maior teor de Ce presente gerando uma maior quantidade de vacâncias de oxigênio, favorecendo assim a reatividade do sistema.
Referências
1. Li X, Liu J, Ni P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustain. 2021;13(13).
2. Li X. The significance of comparing the rate of warming since the industrial revolution with the rate of paleoclimatic warming. Appl Comput Eng. 2024;84(1):41–5.
3. Davis SJ, Caldeira K. Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci U S A. 2010;107(12):5687–92.
4. Carvalho AS De, Rosa CD, Aparecida E. B o l e t i m d e c o n j u n t u r a. 2024;18.
5. Luis Junges A, Yuri Santos V, Teresinha Massoni N. Efeito Estufa E Aquecimento Global: Uma Abordagem Conceitual a Partir Da Física Para Educação Básica. Experiências em Ensino Ciências [Internet]. 2018;13(5):126–51. Available from: https://www.skepticalscience.com/.
6. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, et al. An overview of CO2 capture technologies. Energy Environ Sci. 2010;3(11):1645–69.
7. Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today. 2009;148(3–4):191–205.
8. Zhu M, Ge Q, Zhu X. Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction: Recent Advances in the Design of Active and Selective Supported Metal Catalysts. Trans Tianjin Univ [Internet]. 2020;26(3):172–87. Available from: https://doi.org/10.1007/s12209-020-00246-8
9. Kaiser P, Unde RB, Kern C, Jess A. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and fischer-tropsch synthesis. Chemie-Ingenieur-Technik. 2013;85(4):489–99.
10. Wai SH, Ota Y, Nishioka K. Performance analysis of sabatier reaction on direct hydrogen inlet rates based on solar-to-gas conversion system. Int J Hydrogen Energy [Internet]. 2021;46(53):26801–8. Available from: https://doi.org/10.1016/j.ijhydene.2021.05.156
11. Yang L, Pastor-Pérez L, Villora-Pico JJ, Gu S, Sepúlveda-Escribano A, Reina TR. CO2 valorisation via reverse water-gas shift reaction using promoted Fe/CeO2-Al2O3 catalysts: Showcasing the potential of advanced catalysts to explore new processes design. Appl Catal A Gen. 2020;593(November 2019).
12. Pastor-Pérez L, Buitrago-Sierra R, Sepúlveda-Escribano A. CeO2-promoted Ni/activated carbon catalysts for the water-gas shift (WGS) reaction. Int J Hydrogen Energy. 2014;39(31):17589–99.
13. Li M, My Pham TH, Ko Y, Zhao K, Zhong L, Luo W, et al. Support-Dependent Cu-In Bimetallic Catalysts for Tailoring the Activity of Reverse Water Gas Shift Reaction. ACS Sustain Chem Eng. 2022;10(4):1524–35.
14. Chatzilias C, Martino E, Bikogiannakis AK, Kyriakou G, Katsaounis A. Unraveling the role of EPOC during the enhancement of RWGS reaction in a Pt/YSZ/Au single chamber reactor. J CO2 Util [Internet]. 2024;90(August):102980. Available from: https://doi.org/10.1016/j.jcou.2024.102980
15. Rabee AIM, Zhao D, Cisneros S, Kreyenschulte CR, Kondratenko V, Bartling S, et al. Role of interfacial oxygen vacancies in low-loaded Au-based catalysts for the low-temperature reverse water gas shift reaction. Appl Catal B Environ [Internet]. 2023;321(October 2022):122083. Available from: https://doi.org/10.1016/j.apcatb.2022.122083
16. dos Santos KGG, Thill AS, Matte LP, Girotto GZ, Costa M V., Bohn DR, et al. Engineering Pt–CeO 2 interfaces for reverse water-gas shift (RWGS) reaction . RSC Appl Interfaces. 2024;1(5):992–1000.
17. Zhang H, Xiao Z, Zhang C, Ye F, Gu J, Yuan E, et al. Pt-supported on N-doped carbon/TiO2 nanomaterials derived from NH2-MIL-125 for efficient photo-thermal RWGS reaction. J Colloid Interface Sci [Internet]. 2025;680(PA):407–16. Available from: https://doi.org/10.1016/j.jcis.2024.11.031
18. Teixeira C de OP. Estudo de catalisadores metálicos para a produção de metanol a partir da conversão de CO2. Brazilian J Dev. 2022;8(12):79484–94.
19. González-Arias J, González-Castaño M, Sánchez ME, Cara-Jiménez J, Arellano-García H. Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction. Renew Energy. 2022;182:443–51.
20. Álvarez-Hernández D, Marín-Sánchez M, Lobo-Andrades L, Azancot L, Bobadilla LF, Ivanova S, et al. Low-temperature reverse water gas-shift reaction over highly efficient Cu-hydrotalcites: Mechanistic insights on the role of malachite phase. Catal Today. 2023;422(March).
21. García-Moncada N, González-Castaño M, Ivanova S, Centeno MÁ, Romero-Sarria F, Odriozola JA. New concept for old reaction: Novel WGS catalyst design. Appl Catal B Environ. 2018;238(April):1–5.
22. Lucarelli C, Molinari C, Faure R, Fornasari G, Gary D, Schiaroli N, et al. Novel Cu-Zn-Al catalysts obtained from hydrotalcite-type precursors for middle-temperature water-gas shift applications. Appl Clay Sci. 2018;155(February):103–10.
23. Zhao S, Yang L, Yao S, Dai Y, Chen S, Zeng J, et al. High efficient CuCeO2-δ/SiO2 catalyst for RWGS reaction: impact of Ce content and loading sequence. Greenh Gases Sci Technol. 2024;14(4):636–58.
24. Ebrahimi P, Kumar A, Khraisheh M. A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction. Catalysts. 2022;12(10).
25. Xu N, Ren J, Lou H, Li Y, Zhou W, Ullah I, et al. Structure and Activity Comparison of Cu/CeyZr1-yOx Series Catalysts in the Reverse Water-Gas Shift Reaction. Energy and Fuels. 2024;38(8):7158–66.
26. Pomiro FJ, Fouga GG, Tamietti AE, Bohé AE, De Micco G. Conversion of CO2(g) to CO(g) via reverse water–gas shift cycle on mixed cerium/praseodymium oxides at 500 °C. Chem Eng J. 2024;498(July).
27. Namavar F, Wang G, Cheung CL, Sabirianov RF, Zeng XC, Mei WN, et al. Thermal stability of nanostructurally stabilized zirconium oxide. Nanotechnology. 2007;18(41).
28. Wang HF, Gong XQ, Guo YL, Guo Y, Lu GZ, Hu P. A model to understand the oxygen vacancy formation in Zr-doped CeO 2: Electrostatic interaction and structural relaxation. J Phys Chem C. 2009;113(23):10229–32.
29. Kundakovic L, Flytzani-Stephanopoulos M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl Catal A Gen. 1998;171(1):13–29.
30. Wang Z, Niu Z, Hao Q, Ban L, Li H, Zhao Y, et al. Enhancing the ethynylation performance of CuO-Bi2O3 nanocatalysts by tuning Cu-Bi interactions and phase structures. Catalysts. 2019;9(1).
31. Oliveira Corrêa CL, Licea YE, Amparo Palacio L, Zanon Zotin FM. Effect of composition and thermal treatment in catalysts derived from Cu-Al hydrotalcites-like compounds in the NO reduction by CO. Catal Today [Internet]. 2017;289:133–42. Available from: http://dx.doi.org/10.1016/j.cattod.2016.08.023