Síntese verde de nanopartículas de magnetita com extrato de coco (Cocos nucifera) aplicada em descarboxilação eletroquímica
Palavras-chave:
Magnetita, Sintese verde, Descarboxilação, NanopartículasResumo
As nanopartículas de magnetita (Fe3O4) foram sintetizadas utilizando extrato de fibra de coco (Cocos nucifera), como alternativa sustentável à síntese convencional, substituindo o uso de nitratos e outros reagentes tóxicos como redutores dos íons Fe3+. As amostras foram obtidas sob diferentes condições, sendo a MNT 01 (sem aquecimento, 5% de extrato) a que apresentou maior diâmetro do cristalito, melhor estequiometria e menor incidência de oxidação, evidenciada a partir das análises de difração de raios-X (DRX) e espectroscopia Mössbauer. Na aplicação eletroquímica, a MNT 01 apresentou seletividade de 64,2% para hidrocarbonetos na descarboxilação do ácido láurico, superando tanto a reação sem catalisador (53,7%) quanto a amostra sintetizada sem extrato (61,7%). As amostras com magnetita também alcançaram uma conversão média de 71,2%, indicando uma compatibilidade promissora dessas nanopartículas com a reação.
Referências
Girardet, T., Venturini, P., Martinez, H., Dupin, J.-C., Cleymand, F., & Fleutot, S. (2022). Spinel magnetic iron oxide nanoparticles: Properties, synthesis and washing methods. Applied Sciences (Basel, Switzerland), 12(16), 8127. https://doi.org/10.3390/app12168127
Lak, A., Disch, S., & Bender, P. (2021). Embracing defects and disorder in magnetic nanoparticles. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 8(7). https://doi.org/10.1002/advs.202002682: J. G. Buchanan; H. Z. Sable in Selective Organic Transformations, B. S. Thyagarajan, Ed.; Wiley-Interscience, New York, 1972; Vol. 2, 1-95.
Sodipo, B. K., Noqta, O. A., Aziz, A. A., Katsikini, M., Pinakidou, F., & Paloura, E. C. (2023). Influence of capping agents on fraction of Fe atoms occupying octahedral site and magnetic property of magnetite (Fe3O4) nanoparticles by one-pot co-precipitation method. Journal of Alloys and Compounds, 938(168558), 168558. https://doi.org/10.1016/j.jallcom.2022.168558
Ma, G., Tian, J., & Shen, Y. (2024). Structure and magnetic properties of (Ni,Fe)Fe2O4 derived from nickel slag via molten oxidation. Materials Today. Communications, 40(109537), 109537. https://doi.org/10.1016/j.mtcomm.2024.109537
Adhikari, M., Echeverria, E., Risica, G., McIlroy, D. N., Nippe, M., & Vasquez, Y. (2020). Synthesis of magnetite nanorods from the reduction of iron oxy-hydroxide with hydrazine. ACS Omega, 5(35), 22440–22448. https://doi.org/10.1021/acsomega.0c02928
Ramadan, I., Moustafa, M., & Nassar, M. (2022). Facile controllable synthesis of magnetite nanoparticles via a co-precipitation approach. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.116869.5284
Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green synthesis of nanomaterials. Nanomaterials (Basel, Switzerland), 11(8), 2130. https://doi.org/10.3390/nano11082130
Schäfer, H. J. (2012). Electrochemical conversion of fatty acids. European Journal of Lipid Science and Technology: EJLST, 114(1), 2–9. https://doi.org/10.1002/ejlt.201100045
Bian, J., Wang, Y., Zhang, Q., Fang, X., Feng, L., & Li, C. (2017). Fatty acid decarboxylation reaction kinetics and pathway of co-conversion with amino acid on supported iron oxide catalysts. RSC Advances, 7(75), 47279–47287. https://doi.org/10.1039/c7ra08507a
Schwaminger, S., Syhr, C., & Berensmeier, S. (2020). Controlled synthesis of magnetic iron oxide nanoparticles: Magnetite or maghemite? Crystals, 10(3), 214. https://doi.org/10.3390/cryst10030214
Al-Mamari, R. T., Widatallah, H. M., Elzain, M. E., Gismelseed, A. M., Al-Rawas, A. D., Al-Harthi, S. H., Souier, T. M., & Al-Abri, M. (2022). Structural, Mössbauer, and Optical studies of mechano-synthesized Ru3+-doped LaFeO3 nanoparticles. Hyperfine Interactions, 243(1). https://doi.org/10.1007/s10751-021-01787-7
Hah, H. Y., Gray, S., Johnson, C. E., Johnson, J. A., Kolesnichenko, V., Kucheryavy, P., & Goloverda, G. (2021). Mössbauer spectroscopy of superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 539(168382), 168382. https://doi.org/10.1016/j.jmmm.2021.168382
Castellanos-Rubio, I., Arriortua, O., Iglesias-Rojas, D., Barón, A., Rodrigo, I., Marcano, L., Garitaonandia, J. S., Orue, I., Fdez-Gubieda, M. L., & Insausti, M. (2021). A milestone in the chemical synthesis of Fe3O4 nanoparticles: Unreported bulklike properties lead to a remarkable magnetic hyperthermia. Chemistry of Materials: A Publication of the American Chemical Society, 33(22), 8693–8704. https://doi.org/10.1021/acs.chemmater.1c02654
Ohenhen, L. O., Feinberg, J. M., Slater, L. D., Ntarlagiannis, D., Cozzarelli, I. M., Rios-Sanchez, M., Isaacson, C. W., Stricker, A., & Atekwana, E. A. (2022). Microbially induced anaerobic oxidation of magnetite to maghemite in a hydrocarbon‐contaminated aquifer. Journal of Geophysical Research. Biogeosciences, 127(4). https://doi.org/10.1029/2021jg006560
Campione, M., Murri, M., Cerantola, V., Bessas, D., Rosenthal, A., Chumakov, A., Scambelluri, M., & Malaspina, N. (2022). Magnetic ordering of magnetite inclusions in Olivine at mantle depths in subduction zones. ACS Earth & Space Chemistry, 6(12), 2755–2759. https://doi.org/10.1021/acsearthspacechem.2c00190
Vyhnáleková, S., Miglierini, M. B., Cesnek, M., Štefánik, M., & Matúš, P. (2024). Microbial-induced structural changes in non-stoichiometric magnetite via radioanalytical methods. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-024-09863-2
Osipov, B. D., & Grabois, M. N. (1985). Magnetic hyperfine structure and centrifugal distortion in quadrupole spectra of 12CH3I and 13CH3I. Journal of Molecular Spectroscopy, 111(2), 344–351. https://doi.org/10.1016/0022-2852(85)90010-4
Kołodziej, T., Biało, I., Tabiś, W., Zubko, M., Żukrowski, J., Łątka, K., Lorenzo, J. E., Mazzoli, C., Kąkol, Z., Kozłowski, A., Tarnawski, Z., Wilke, E., Babik, P., Chlan, V., Řezníček, R., Štěpánková, H., Novák, P., Joly, Y., Niewolski, J., & Honig, J. M. (2020). Magnetic field induced structural changes in magnetite observed by resonant x-ray diffraction and Mössbauer spectroscopy. Physical Review. B, 102(7). https://doi.org/10.1103/physrevb.102.075126