Produção de Químicos Renováveis via Pirólise de Microalgas Catalisada por Co/γ-Al₂O₃ e Mo/γ-Al₂O₃

Autores

  • Karoline Sousa Castro Universidade Federal do Rio Grande do Norte Autor
  • Amanda Menezes Caldas Universidade Federal do Rio Grande do Norte Autor
  • Sergio Antonio de Paiva Rocha Universidade Federal do Rio Grande do Norte Autor
  • Amanda Duarte Gondim Universidade Federal do Rio Grande do Norte Autor
  • Aruzza Mabel de Morais Araujo Universidade Federal do Rio Grande do Norte Autor
  • Elisama Vieira dos Santos Universidade Federal do Rio Grande do Norte Autor

Palavras-chave:

Pirólise, microalga, Mo/γ-Al₂O₃, Co/γ-Al₂O₃, acetilação

Resumo

Este estudo investigou a pirólise de microalgas Desmodesmus sp. previamente acetiladas, utilizando catalisadores γ-Al₂O₃ impregnados com Mo e Co. As amostras foram caracterizadas por DRX, FTIR e TGA/DTG, e os produtos analisados por Py-GC/MS. A acetilação aumentou a fração lipídica da biomassa possibilitando maior rendimento de fração pirolítica líquida. A pirólise catalítica com Mo/γ-Al₂O₃ a 500 °C apresentou alta seletividade para ésteres, com destaque para o 2-hidroxi-2-metilpropionato de metila (81,61%), enquanto o Co/γ-Al₂O₃ favoreceu a produção de hidrocarbonetos na faixa C5–C10. Os resultados demonstram o potencial da combinação entre pré-tratamento químico e catálise na melhoria do bio-óleo de microalgas.

Referências

1. SCHULZ, V. et al. From fossil fuels to biofuels: Circular economy diversification for fossil fuel ports. Transportation Research Part D Transport and Environment, v. 144, p. 104796–104796, 5 maio 2025.

2. OLSSON, J.; TOTH, G. B.; ALBERS, E. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. Journal of Applied Phycology, v. 32, n. 5, p. 3305–3317, 16 maio 2020. ‌

3. Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids. Bioresource Technology, v. 130, p. 777–782, 1 fev. 2013.

‌4. FONSECA, N.; FRÉTY, R.; SALES, E. A. Biogasoline Obtained Using Catalytic Pyrolysis of Desmodesmus sp. Microalgae: Comparison between Dry Biomass and n-Hexane Extract. Catalysts, v. 12, n. 12, p. 1517–1517, 25 nov. 2022.

‌5. XUE et al. Performance of Catalytic Fast Pyrolysis using a γ-Al2O3 Catalyst with Compound Modification of ZrO2 and CeO2. Catalysts, v. 9, n. 10, p. 849, 12 out. 2019.

6. D. GARCÍA-PÉREZ et al. Influence of bimetallic characteristics on the performance of MoCoP and MoFeP catalysts for methyl laurate hydrodeoxygenation. Catalysis Today, v. 367, p. 43–50, 16 out. 2020.

‌7. HAO, J. et al. Analytical pyrolysis of biomass using pyrolysis-gas chromatography/mass spectrometry. Renewable and Sustainable Energy Reviews, v. 208, p. 115090–115090, 4 nov. 2024.

‌8. HOANG, A. T. et al. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, v. 281, p. 130878, out. 2021.

‌9. WANG, J. et al. Molybdenum-based catalysts supported on alumina for direct dehydrogenation of isobutane. Molecular Catalysis, v. 511, p. 111746–111746, 1 jul. 2021.

‌10. BEHNEJAD, B.; ABDOUSS, M.; TAVASOLI, A. Comparison of performance of Ni–Mo/γ-alumina catalyst in HDS and HDN reactions of main distillate fractions. Petroleum Science, v. 16, n. 3, p. 645–656, 29 abr. 2019.

11. SUN, J. et al. Porous Co3O4 column as a high-performance Lithium anode material. Journal of Porous Materials, v. 28, n. 3, p. 889–894, 6 fev. 2021.

12. BHARDWAJ, P. et al. Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for suppression of electromagnetic radiation. SN Applied Sciences, v. 1, n. 1, 18 dez. 2018.‌

‌13. OMEIRI, M. et al. Aluminum oxide, cobalt aluminum oxide, and aluminum-doped zinc oxide nanoparticles as an effective antimicrobial agent against pathogens. Heliyon, v. 10, n. 10, p. e31462, maio 2024.

‌14. TANONGKIAT KIATSIRIROAT. Biochar production from freshwater algae by slow pyrolysis. (DOAJ: Directory of Open Access Journals), 1 maio 2012.

15. MOHIT, A.; REMYA, N. Pyrolysis characteristics and kinetics study of native polyculture microalgae using thermogravimetric analysis. Biomass Conversion and Biorefinery, v. 14, n. 16, p. 19825–19833, 15 abr. 2023.‌

16. BILLER; ROSS. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, v. 102, n. 1, p. 215–225, 1 jan. 2011.

17. XIANG, Q.; ZHOU, Y.; TAN, C.-X. Toxicity Effects of Polystyrene Nanoplastics with Different Sizes on Freshwater Microalgae Chlorella vulgaris. v. 28, n. 9, p. 3958–3958, 8 maio 2023.‌

18. GAITÁN-ALVAREZ, J. et al. Acetylation of tropical hardwood species from forest plantations in Costa Rica: an FTIR spectroscopic analysis. Journal of wood science, v. 66, n. 1, 16 jul. 2020.

19. KONG, W. et al. Pyrolysis of Spirulina platensis, Tetradesmus obliquus and Chlorella vulgaris by TG-FTIR and Py-GC/MS: Kinetic analysis and pyrolysis behaviour. Energy, v. 244, p. 123165, abr. 2022.

20. NA, J.-G. et al. Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents. Renewable Energy, v. 81, p. 779–784, set. 2015.

Downloads

Publicado

03-11-2025

Edição

Seção

Conversão de Biomassa e moléculas derivadas