Impacto da Água na Adsorção de CO₂ em Zeólitas LTA com Na⁺ e Ca²⁺: Uma Abordagem de Simulação
Palavras-chave:
Zeólitas, Adsorção de CO₂, Hidratação, Cátions compensadores de carga, Seletividade.Resumo
Este estudo investiga o impacto dos cátions compensadores e da hidratação na adsorção de CO₂ em zeólitas LTA, ITQ-29 e suas versões hidratadas. A análise das isotermas revelou que a presença de água reduz a capacidade de captura de CO₂, com efeito mais acentuado nas zeólitas com cátions compensadores. A zeólita Ca-LTA, com cátions Ca²⁺, apresentou a maior capacidade de adsorção devido à polarização intensa causada pelos cátions divalentes. A Na-LTA, com cátions Na⁺, teve desempenho intermediário, enquanto a ITQ-29, sem cátions, teve o pior desempenho adsortivo devido à sua estrutura hidrofóbica. A hidratação afetou a mobilidade do CO₂, restringindo o acesso aos sítios ativos e diminuindo a difusão do gás. A água também alterou as interações de CO₂ com a zeólita, tornando os sítios mais polarizados e aumentando a afinidade do gás. Esses resultados evidenciam que a presença de água e o tipo de cátion são cruciais para o desempenho adsortivo, oferecendo insights para o desenvolvimento de materiais seletivos para captura de CO₂.
Referências
1. COLLINS, Fiona et al. A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and mesoporous Materials, v. 291, p. 109667, 2020.
2. SMITH, Joseph V. Tetrahedral Frameworks of Zeolites, Clathrates and Related Materials. Volume 14. Subvolume A. New York: Springer - Verlag Berlin Heidelberg, 2000. 266 p. (Physical Chemistry - Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology).
3. CAILLIEZ, Fabien et al. Thermodynamic study of water intrusion in hydrophobic zeolites by Monte Carlo simulations. In: Studies in surface science and catalysis. Elsevier, 2008. p. 683- 688
4. CAILLIEZ, Fabien et al. Thermodynamic study of water intrusion in hydrophobic zeolites by Monte Carlo simulations. In: Studies in surface science and catalysis. Elsevier, 2008. p. 683- 688
5. GIANETTO, G. P.; MONTES, A. R.; RODRÍGUEZ, G. F. Zeolitas - Características, Propriedades y Aplicaciones Industriales. Editorial Innovación Tecnológica, 2ª edição, 1990.
6. CHEUNG, Ocean et al. Highly selective uptake of carbon dioxide on the zeolite| Na 10.2 KCs 0.8|-LTA–a possible sorbent for biogas upgrading. Physical Chemistry Chemical Physics, v. 18, n. 24, p. 16080-16083, 2016.
7. STARKE, A. et al. Impact of Na+and Ca2+ Cations on the Adsorption of H2S on Binder-Free LTA Zeolites. Adsorption Science and Technology, v. 2021, 2021.
8. ZHANG, Manjie et al. Insights moleculares sobre propriedades de adsorção e difusão de CO2/CH4 em zeólitas ZSM-5 trocadas por cátions. The Journal of Physical Chemistry C , v. 128, n. 16, p. 6962-6970, 2024.
9. GARCÍA-SÁNCHEZ, Almudena et al. Influence of force field parameters on computed diffusion coefficients of CO2 in LTA-type zeolite. Microporous and mesoporous materials, v. 158, p. 64-76, 2012.
10. LEWIS, Dewi W. et al. Modelling of hydrated Ca-rich zeolites. Molecular Simulation, v. 28, n. 6-7, p. 649-661, 2002.
11. PALOMINO, Miguel et al. Preparation of continuous highly hydrophobic pure silica ITQ-29 zeolite layers on alumina supports. Molecules, v. 25, n. 18, p. 4150, 2020.
12. CALERO, Sofia; GÓMEZ-ÁLVAREZ, P. Effect of the confinement and presence of cations on hydrogen bonding of water in LTA-type zeolite. The Journal of Physical Chemistry C, v. 118, n. 17, p. 9056-9065, 2014.
13. PRODINGER, Sebastian; DEREWINSKI, Miroslaw A. Recent progress to understand and improve zeolite stability in the aqueous medium. Petroleum Chemistry, v. 60, p. 420-436, 2020.
14. GÓMEZ-ÁLVAREZ, Paula et al. Impact of the nature of exchangeable cations on LTA-type zeolite hydration. The Journal of Physical Chemistry C, v. 120, n. 40, p. 23254-23261, 2016.
15. HIGGINS, F. Manon; DE LEEUW, Nora H.; PARKER, Stephen C. Modelling the effect of water on cation exchange in zeolite A. Journal of Materials Chemistry, v. 12, n. 1, p. 124-131, 2002.
16. ZWIJNENBURG, Martijn A.; BROMLEY, Stefan T. Zeolite synthesis: an energetic perspective. Physical Chemistry Chemical Physics, v. 12, n. 43, p. 14579-14584, 2010.
17. GREN, Wojciech et al. Structure of zeolite A (LTA) surfaces and the zeolite A/water interface. The Journal of Physical Chemistry C, v. 114, n. 21, p. 9739-9747, 2010.
18. NO, Kyoung Tai; JHON, Mu Shik. Theoretical Study of Hydration of Zeolite NaA. Journal of the Korean Chemical Society, v. 23, n. 6, p. 374-384, 1979.
19. OKELLO, Felix Otieno et al. Towards estimation and mechanism of CO2 adsorption on zeolite adsorbents using molecular simulations and machine learning. Materials Today Communications, v. 36, p. 106594, 2023.
20. SUN, H. et al. Energetics of sodium–calcium exchanged zeolite A. Physical Chemistry Chemical Physics, v. 17, n. 17, p. 11198-11203, 2015
21. CALERO, Sofia; GÓMEZ-ÁLVAREZ, P. Effect of the confinement and presence of cations on hydrogen bonding of water in LTA-type zeolite. The Journal of Physical Chemistry C, v. 118, n. 17, p. 9056-9065, 2014.
22. HYLA, Alexander S. et al. Significant temperature dependence of the isosteric heats of adsorption of gases in zeolites demonstrated by experiments and molecular simulations. The Journal of Physical Chemistry C, v. 123, n. 33, p. 20405-20412, 2019.
23. MARTIN-CALVO, Ana et al. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8. Physical Chemistry Chemical Physics, v. 20, n. 15, p. 9957-9964, 2018.