Homogeneous one-pot synthesis of ZnCMC nanoparticles via intermediate-state autocatalyzed carboxymethylation of cellulose
Palavras-chave:
Cellulose dissolution, Homogeneous conversion, Coordination polymer, Nanomaterial, AutocatalysisResumo
This research explores the ultrarapid, homogeneous carboxymethylation of cellulose using zinc chloride molten salt hydrate (ZnCl₂·3H₂O) as a green solvent, without prior NaOH activation. Carboxylation begins after just 10 minutes of reaction, with products recovered using eco-friendly organic solvents after varying reaction times (30 min to 5 h). The method yields a novel, water-soluble, nanometric (10–36 nm) biocoordination polymer, nano ZnCMC, formed by the complexation of zinc cations with the carboxylate groups of CMC. Spectroscopic and microscopic analyses confirm its composition and morphology. ZnCMC nanoparticles self-assemble into cubic supracrystals via coulombic interactions between charged [Zn₄O(RCO₂)₆]²⁺ clusters and chloride anions from excess NaCl, mimicking the secondary building unit (SBU) and microstructure of MOF-5. Produced from renewable sources using non-toxic, reusable reagents, this material offers promising applications in nanotechnology, catalysis, sensing, and photonics, aligning with Green Chemistry principles.
Referências
1. Freire, C. S.; Vilela, C. Nanomaterials 2022, 12, 431.
2. Xu, L.; Meng, T.; Zheng, X.; Li, T.; Brozena, A. H.; Mao, Y.; Zhang, Q.; Clifford, B. C.; Rao, J.; Hu, L. Adv. Funct. Mater. 2023, 33, 2302098.
3. Nazarbek, U.; Nazarbekova, S.; Raiymbekov, Y.; Kambatyrov, M.; Abdurazova, P. e-Polymers 2023, 23, 20230013.
4. Kong, Q.; Zhang, H.; Wang, P.; Lan, Y.; Ma, W.; Shi, X. Int. J. Biol. Macromol. 2023, 244, 125169.
5. Tan, Z.; Tan, J.; Yang, Z.; Sun, W.; Guo, A.; Wang, J.; Li, Y.; Lin, X. Chemosphere 2023, 335, 139129.
6. Wang, H. S.; Wang, Y. H.; Ding, Y. Nanoscale Adv. 2020, 2, 3788–3797.
7. Engel, E. R.; Scott, J. L. Green Chem. 2020, 22, 3693–3715.
8. Sen, S.; Losey, B. P.; Gordon, E. E.; Argyropoulos, D. S.; Martin, J. D. J. Phys. Chem. B 2016, 120, 1134–1141.
9. Chen, Y.; Yu, H. Y.; Li, Y. ACS Sustain. Chem. Eng. 2020, 8, 18446–18454.
10. Ellerbrock, R. H.; Gerke, H. H. J. Plant Nutr. Soil Sci. 2021, 184, 388–397.
11. Mondal, M. I. H.; Yeasmin, M. S.; Rahman, M. S. Int. J. Biol. Macromol. 2015, 79, 144–150.
12. Wypych, F.; Arízaga, G. G. C.; da Costa Gardolinski, J. E. F. J. Colloid Interface Sci. 2005, 283, 130–138.
13. Li, M.; Xu, Z.; Chen, Y.; Shen, G.; Wang, X.; Dai, B. Nanomaterials 2021, 12, 98.
14. Danaei, M. R. M. M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. R. Pharmaceutics 2018, 10, 57.
15. Beltrán, J. J.; Barrero, C. A.; Punnoose, A. Phys. Chem. Chem. Phys. 2019, 21, 8808–8819.
16. Capanema, N. S. V.; Mansur, A. A. P.; Carvalho, I. C.; Carvalho, S. M.; Mansur, H. S. Gels 2023, 9, 166.
17. Zhang, F.; Dou, J.; Zhang, H. Polymers 2018, 10, 1340.
18. Wang, D.; Yang, J.; Xue, F.; Wang, J.; Hu, W. Colloids Surf. A 2021, 612, 126009.
19. Pomalaza, G.; Simon, P.; Addad, A.; Capron, M.; Dumeignil, F. Green Chem. 2020, 22, 2558–2574.
20. Bian, T.; Gardin, A.; Gemen, J.; Houben, L.; Perego, C.; Lee, B.; Elad, N.; Chu, Z.; Pavan, G. M.; Klajn, R. Nat. Chem. 2021, 13, 940–949.
21. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Nature 2006, 439, 55–59.
22. Levin, M. D.; Kaphan, D. M.; Hong, C. M.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. J. Am. Chem. Soc. 2016, 138, 9682–9693.
23. Scaeteanu, G. V.; Maxim, C.; Badea, M.; Olar, R. Molecules 2023, 28, 1132.