

Influência do precursor do catalisador CuO-ZnO na hidrogenação de CO₂ a metanol

Gustavo Medeiros de Paula^{1,2} Renatto Andrade Angeli^{1,2} Luana do Nascimento Rocha de Paula¹ José Mansur Assaf^{1,2} Janaina Fernandes Gomes^{1,2,*}

¹Laboratório de Catálise, Departamento de Engenharia Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235,13665-905, São Carlos, SP, Brasil. janainafg@ufscar.br

²Instituto Nacional de Ciência e Tecnologia - INCT CAPICUA, Departamento de Engenharia Química, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brasil.

Resumo/Abstract

RESUMO – Neste trabalho investigou-se a influência das fases precursoras do óxido de CuO-ZnO na conversão de CO $_2$ em metanol. Os precursores do óxido foram sintetizados por coprecipitação ou síntese hidrotérmica, utilizando misturas reacionais com as seguintes composições molares: $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 9

Palavras-chave: Hidrogenação de CO2, Cu-ZnO, diferentes agentes precipitantes, diferentes métodos de síntese.

ABSTRACT - This work investigated the influence of precursor phases of CuO-ZnO oxide on the conversion of CO_2 to methanol. The oxide precursors were synthesized by coprecipitation or hydrothermal synthesis, using reaction mixtures with the following molar compositions: $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: $X \text{ Cu}(NO_3)_2.3H_2O$: 9 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: 2 NaHCO_3 : 800 H_2O ou $1 \text{ Zn}(NO_3)_2.6H_2O$: 2 NaHCO_3 : $8 \text$

Keywords: CO_2 hydrogenation, Cu-ZnO, different precipitating agents, different synthesis methods.

1. Introdução

O dióxido de carbono (CO₂) é um dos principais gases da atmosfera terrestre e desempenha um papel crucial na regulação da temperatura do planeta por meio do efeito estufa (1). No entanto, o uso intensivo de combustíveis fósseis levou a um aumento alarmante nas emissões globais desse gás, resultando em uma concentração atmosférica que atingiu 420 ppm em 2024 (2,3). Diante desse cenário ambiental preocupante, esforços têm sido direcionados à transição energética global e ao desenvolvimento de tecnologias de captura, utilização e armazenamento de carbono (CCUS), que surgem como alternativas para mitigar as emissões de CO₂ (4). Em relação à utilização de CO₂, esse gás pode ser convertido por meio de processos

catalíticos em uma gama de produtos e a complexidade do processo depende do produto desejado (5). A hidrogenação catalítica de CO₂ em metanol tem se destacado, pois o metanol é um dos produtos mais simples que podem ser obtidos e ele pode ser usado como uma molécula plataforma para a síntese de vários compostos (6–8).

Industrialmente, o metanol é produzido a partir do gás de síntese, uma mistura de monóxido de carbono (CO) e hidrogênio (H₂), convencionalmente obtida a partir de reações de reforma catalítica do metano (CH₄) (9). A hidrogenação catalítica do CO₂ apresenta semelhanças com a conversão do CO e ocorre por meio de três reações paralelas (Eqs. 1, 2 e 3) (10). No entanto, o processo de conversão do CO₂ apresenta maiores limitações

termodinâmicas, devido aos ΔH e ΔG associados à sua conversão direta em metanol, em comparação aos ΔH e ΔG da conversão do CO, sendo fortemente dependentes da pressão e da temperatura do processo (10,11).

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$$
 (Eq.1)

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
 (Eq. 2)

$$CO + 2H_2 \rightleftharpoons CH_3OH$$
 (Eq. 3)

Independentemente da matéria-prima utilizada, esses processos normalmente empregam matrizes catalíticas compostas de óxidos mistos, como Cu-ZnO, Cu-ZnO-Al₂O₃, Cu-ZrO₂, Pt/In₂O₃-ZrO₂ e Cu/In₂O₃, entre outros (10,12-14). Embora os óxidos mistos convertam CO e CO₂ em metanol, os principais desafios tecnológicos associados a esses processos são as baixas atividades e estabilidades desses catalisadores, que normalmente sofrem de desativação devido à sinterização dos sítios ativos (15,16). Na busca por uma solução para esses problemas, o efeito das fases precursoras envolvidas na formação desses óxidos tem sido negligenciado. Esses catalisadores são normalmente produzidos por métodos de coprecipitação devido à simplicidade desse processo na obtenção dos materiais (16,17). Nesse contexto, este estudo investigou a influência dos precursores de óxidos de CuO-ZnO na conversão de CO₂ em metanol. Para este propósito, os precursores do catalisador foram sintetizados por coprecipitação e por síntese hidrotérmica estática ou assistida por agitação por tombamento, usando ureia ou bicarbonato de sódio como agentes precipitantes.

2. Experimental

2.1. Preparação dos catalisadores

2.1.1. Coprecipitação

Nas sínteses foram empregadas misturas reacionais com as seguintes composições molares: 1 Zn(NO₃)₂.6H₂O: X $Cu(NO_3)_2.3H_2O: 9 NaHCO_3: 800 H_2O, onde X = 0.25 ou$ 0,67 ou 1,50. Os materiais foram sintetizados por coprecipitação em um reator batelada encamisado, aquecido a 70 °C, com agitação magnética (16). Tipicamente, duas soluções foram preparadas, cada uma contendo 25 mL de água deionizada e as quantidades apropriadas de nitrato de zinco ou nitrato de cobre. Essas soluções foram gotejadas sobre uma solução contida no reator, que foi preparada com 250 mL de água deionizada e uma quantidade apropriada de bicarbonato de sódio. A mistura final, com pH ~ 8, foi agitada a 70 °C por 1 h. Posteriormente, o sólido precipitado foi separado por centrifugação, lavado em múltiplos ciclos de centrifugação e então seco a 70 °C por 24 h. Os óxidos mistos foram obtidos após calcinação dos precursores a 400 °C por 1 h. Os precursores e óxidos mistos foram denominados XCu-NaBi-CP XCuO-NaBi-CP, respectivamente, onde X indica a porcentagem de cobre nos

materiais, NaBi denota o uso de bicarbonato de sódio e CP o método utilizado.

2.1.2. Tratamento hidrotérmico

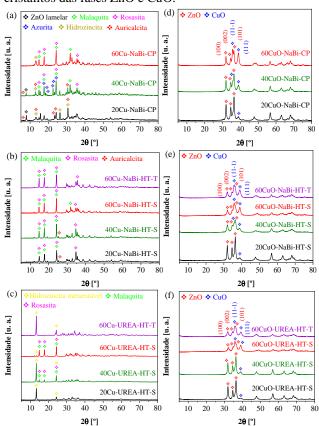
Os precursores Cu-Zn foram sintetizados utilizando misturas reacionais com as seguintes composições molares: 1 Zn(NO₃)₂.6H₂O: X Cu(NO₃)₂.3H₂O: 9 NaHCO₃: 800 H₂O ou 1 $Zn(NO_3)_2.6H_2O$: X $Cu(NO_3)_2.3H_2O$: 9 NH_2CONH_2 : 800 H_2O , onde X = 0.25 ou 0.67 ou 1.50. Os procedimentos empregados foram baseados em adaptações de métodos descritos na literatura (16,18). Em típico experimento, duas soluções foram preparadas, contendo 25 mL de água deionizada e as quantidades apropriadas de nitrato de zinco ou nitrato de cobre. Essas soluções foram gotejadas sobre uma solução previamente preparada em um recipiente de 400 mL, contendo 250 mL de água deionizada e uma quantidade apropriada de bicarbonato de sódio ou ureia. Após agitação sob temperatura ambiente por 15 min, a mistura foi transferida para copos de teflon que foram levados para tratamento hidrotérmico em autoclaves de aço inoxidável a 100 °C por 72 h. As autoclaves foram colocadas em uma estufa, em modo estático ou com agitação por tombamento. Após o tratamento hidrotérmico, a mistura, com pH entre 8 e 9, foi separada por centrifugação e o sólido foi lavado em múltiplos ciclos de centrifugação e então seco a 70 °C por 24 h. Os óxidos mistos foram obtidos após calcinação dos precursores a 400 °C por 1 h. Os precursores e óxidos mistos foram denominados XCu-NaBi-HT-S, XCu-NaBi-HT-T, XCu-UREA-HT-S, XCu-UREA-HT-T, XCuO-NaBi-HT-S, XCuO-NaBi-HT-T, XCuO-UREA-HT-S e XCuO-UREA-HT-T, onde X indica a porcentagem de cobre nos materiais, NaBi ou UREA denota o agente precipitante usado, HT se refere ao tratamento hidrotérmico, S indica um processo estático e T indica um processo com agitação por tombamento.

2.2. Caracterização dos catalisadores

A técnica de difração de raios-X (DRX) foi utilizada para caracterizar os precursores e os óxidos mistos. Essas análises foram realizadas em um difratômetro Rigaku Miniflex 600, radiação Cu K α (λ = 0,15418 nm), velocidade do goniômetro de 5,0° min⁻¹, voltagem de 40 kV, corrente de 15 mA, tamanho do passo de 0,02° e ângulo de varredura 20 de 5,0° a 80,0°.

Microscopia eletrônica de varredura (MEV) foi utilizada para obter imagens dos óxidos e estimar sua composição química, por espectrometria de raios X por dispersão de energia (EDS). As imagens dos precursores foram obtidas em um microscópio Philips, modelo XL30 FEG, operado a 25 kV, equipado com um detector Bruker EDS, modelo XFlash® 6/60 e em um microscópio FEI Company Magellan 400 L operando a 15 kV. As amostras foram dispersas em metanol, colocadas em um porta amostras de alumínio, recobertas com ouro e após secas, destinadas às analisadas.

2.3. Avaliação catalítica


As reações de hidrogenação de CO2 foram realizadas em um reator de leito fixo, operando sob fluxo contínuo e pressão atmosférica. Inicialmente, para avaliar a atividade dos diferentes óxidos sintetizados utilizando bicarbonato de sódio ou ureia e diferentes métodos de síntese, os experimentos catalíticos foram realizados a 200 °C, usando 0,2 g de cada óxido misto. Posteriormente, o óxido misto mais ativo foi investigado sob diferentes temperaturas de reação: 150 °C; 175 °C; 225 °C; 250 °C; 0,2 g; GHSV = 12.000 mL g⁻¹ h⁻¹. Antes do início de cada reação, o óxido foi ativado in situ a 300 °C por 1 h sob uma vazão de 30 mL min⁻¹ de H₂ puro. Posteriormente, o reator foi resfriado até a temperatura de reação desejada, alimentado com uma mistura de H₂ puro e CO₂ puro, a vazões de 30 mL min⁻¹ de H₂ e 10 mL min⁻¹ de CO₂, e a reação foi conduzida por 3 h. Ao longo da reação, na saída do reator, os produtos líquidos foram condensados e posteriormente analisados por cromatografia a gás. Já os produtos gasosos foram avaliados on-line. As análises foram realizadas usando um instrumento GC-2014 Plus (Shimadzu, Tóquio, Japão), equipado com dois detectores TCD, um detector FID, cinco colunas empacotadas (Porapak Q, Porapak N, MS-13X e MS-5A) e uma coluna capilar (Stabilwax). O sistema reacional utilizado, os procedimentos operacionais empregados, os métodos cromatográficos desenvolvidos e as equações usadas para calcular a conversão, seletividade e produtividade são detalhados na literatura (3,16).

3. Resultados e Discussão

A Fig. 1 apresenta os difratogramas dos precursores e dos óxidos sintetizados. Como mostrado na Fig. 1a, o método de coprecipitação leva à formação de diferentes fases, dependendo da carga de cobre utilizada na síntese. O precursor Cu-Zn sintetizado com 20% em mols de cobre apresentou um perfil de difração correspondente a uma mistura de três fases: hidróxido de zinco lamelar Zn(OH)₂ (19), hidrozincita Zn₅(CO₃)₂(OH)₆ (20) e aurichalcita $(Zn,Cu)_5(CO_3)_2(OH)_6$ (21). Quando a carga de cobre aumentou para 40% molar, três fases adicionais foram formadas: azurita Cu₃(CO₃)₂(OH)₂ (22,23), rosasita $(Cu,Zn)_2(CO_3)(OH)_2$ (21) e malaquita $Cu_2(CO_3)(OH)_2$ (21). Já quando a carga de cobre foi de 60%, malaquita, rosasita e hidrozincita foram formadas. A Fig. 1b mostra que, quando o bicarbonato de sódio foi empregado no método hidrotérmico, as fases precipitadas predominantemente malaquita, rosasita e aurichalcita, independentemente da carga metálica usada ou do recurso de agitação por tombamento. Na Fig. 1c é possível observar que quando a ureia foi usada em combinação com o método hidrotérmico estático, as fases precipitadas variaram, dependendo da carga metálica. Para baixas concentrações de cobre, a fase predominante foi uma forma lamelar metaestável de hidrozincita Cu_XZn_(4-X)CO₃(OH)₆.H₂O (18).

À medida que a carga de cobre aumentou, a fase predominante mudou para o sistema malaquita-rosasita, enquanto a hidrozincita metaestável tornou-se uma fase residual. Além disso, a agitação por tombamento forçou o sistema reacional a produzir a fase de hidrozincita metaestável, mesmo em altas concentrações de cobre. Finalmente, as Figs. 1d, 1e e 1f mostram que os óxidos mistos derivados dos diferentes precursores apresentam perfis de difração característicos do ZnO, com três picos principais em aproximadamente 31,9°, 34,6° e 36,4°, além de dois picos atribuídos ao CuO, localizados em torno de 35,7° e 38,9° (16). Observa-se também que, no óxido 60CuO-UREIA-HT-T, esses picos são menos intensos e mais amplos, indicando uma redução nos tamanhos dos cristalitos das fases ZnO e CuO.

Figura 1. Difratogramas de raios X dos precursores e óxidos: a) precursores NaBi-CP; b) precursores NaBi-HT; c) precursores UREIA-HT; d) óxidos NaBi-CP; e) óxidos NaBi-HT; f) óxidos UREIA-HT.

Com base nesses resultados e discussões anteriores (16,18,21), pode-se inferir que a formação dos precursores é influenciada pela taxa de precipitação, que é determinada pela taxa de hidrólise do agente precipitante no meio reacional. Como a hidrólise do bicarbonato de sódio ocorre quase instantaneamente, Eqs. 4, 5, 6 e 7, diferentes fases se formam separadamente e não se desenvolvem completamente. No entanto, a adição de uma etapa de tratamento hidrotérmico induz essas fases a se

transformarem no sistema malaquita-rosasita-aurichalcita, no qual ocorre a substituição isomórfica entre Cu e Zn. Por outro lado, como a hidrólise da ureia é um processo mais gradual, que requer condições controladas de pressão e temperatura (Eqs. 8, 9 e 10), as fases precipitam mais lentamente, favorecendo substituições isomórficas no sistema malaquita-rosasita-aurichalcita ou na hidrozincita metaestável.

$$NaHCO_3 \rightarrow Na^+ + HCO_3^-$$
 (Eq. 4)

$$HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$$
 (Eq. 5)

$$HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$$
 (Eq. 6)

$$H_2CO_3 \rightleftharpoons H_2O + CO_2$$
 (Eq. 7)

$$CO(NH_2)_2 + H_2O \rightleftharpoons 2NH_3 + CO_2$$
 (Eq. 8)

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$
 (Eq. 9)

$$CO_2 + H_2O \rightleftharpoons 2H^+ + CO_3^{2-}$$
 (Eq. 10)

Conforme mostrado nas Figs. 2a e 2b, os óxidos obtidos apresentaram microgrãos coprecipitação morfologias indefinidas, compostos por nanopartículas aglomeradas e empacotadas. Quando 20% em mols de Cu foi utilizado, nanopartículas formaram predominantemente bastonetes, enquanto o uso de 60% de Cu resultou na formação de nanopartículas levemente esféricas. Esse comportamento já foi relatado em outros estudos (16,17), e a formação desse tipo de grão parece ser uma característica típica do processo de coprecipitação. Por outro lado, quando NaHCO3 foi empregado no método hidrotérmico, Figs. 2c e 2d, as nanopartículas de óxido apresentaram menor grau de empacotamento, resultando em microgrãos com formato geométrico bem definido. Com 20% mols de Cu, duas microestruturas distintas foram observadas: (i) esferas ocas com diâmetros entre 10 e 20 µm, compostas por uma casca de folhas interconectadas e (ii) grandes blocos retangulares aglomerados, formando esferas. Em contraste, com 60% em mols de Cu, a síntese levou à formação de esferas disformes compostas por folhas ou hastes espessas. Nas Figs. 2e e 2f, pode-se observar que, independentemente da concentração de cobre, as sínteses realizadas com ureia produziram microestruturas esféricas lamelares com aproximadamente 10 µm de diâmetro, formadas por uma densa rede de folhas interconectadas compostas por nanopartículas interligadas. Finalmente, os óxidos sintetizados por síntese hidrotérmica com tombamento, Figs. 2g e 2h, exibiram comportamentos distintos. O material sintetizado com NaHCO3, Fig. 2g, apresentou empacotamento de nanopartículas, enquanto o material sintetizado com ureia, Fig. 2h, manteve a formação de esferas lamelares compostas por folhas interconectadas.

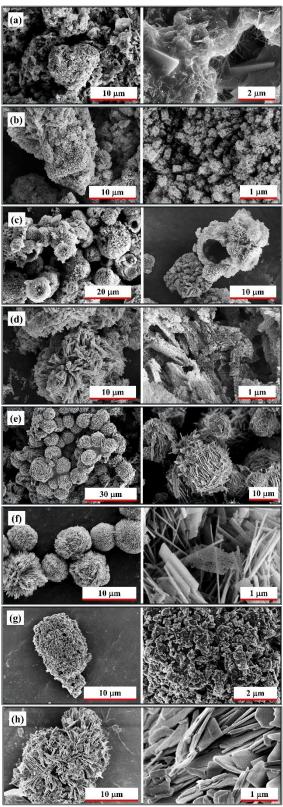
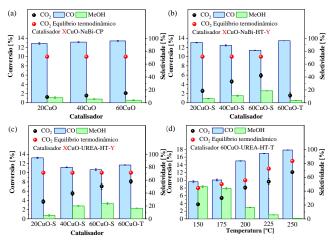



Figura 2. Imagens de microscopia eletrônica de varredura: a) 20CuO-NaBi-CP; b) 60CuO-NaBi-CP; c) 20CuO-NaBi-HT-S; d) 60CuO-NaBi-HT-S; e) 20CuO-UREIA-HT-S; f) 60CuO-UREIA-HT-T; h) 60CuO-UREIA-HT-T.

A Fig. 3 apresenta o desempenho catalítico dos diferentes óxidos na hidrogenação de CO2 em metanol. Conforme ilustrado na Fig. 3a, independentemente da carga de cobre utilizada, os óxidos sintetizados por coprecipitação exibiram a menor atividade catalítica, com conversões variando de 1% a 2% e baixa produtividade de metanol. Kamsuwan et al. [17] relataram resultados semelhantes para o óxido misto CuO-ZnO-Al₂O₃ sintetizado por coprecipitação usando bicarbonato de sódio. Esse comportamento pode ser atribuído à segregação de fases induzida pelo método de coprecipitação, devido à alta taxa de precipitação fornecida pelo uso de bicarbonato de sódio, levando ao empacotamento de partículas e à redução da interação efetiva entre Cu⁰ and ZnO. Já quando esses materiais foram submetidos ao tratamento hidrotérmico, as conversões foram maiores do que as dos materiais coprecipitados, seguindo a tendência esperada de aumento da conversão com maior carga de cobre. Nestas condições, a conversão variou de 2,6% a 5,9%, mas caiu drasticamente para 1,6% quando o método foi auxiliado por agitação por tombamento. Estes resultados sugerem que a substituição isomórfica Cu-Zn nos precursores e o crescimento de microestruturas está associado ao aumento da atividade catalítica dos óxidos. Além disso, também indicam que o crescimento da microestrutura requer um processo lento.

Figura 3. Desempenho catalítico dos diferentes óxidos: a) NaBi-CP a 200 °C e GHSV de 12.000 mL g⁻¹ h⁻¹; b) NaBi-HT a 200 °C e GHSV de 12.000 mL g⁻¹ h⁻¹; c) UREA-HT a 200 °C e GHSV de 12.000 mL g⁻¹ h⁻¹; d) Efeito da temperatura na conversão de CO₂ usando o catalisador 60CuO-NaBi-HT-T a GHSV de 12.000 mL g⁻¹ h⁻¹; Os pontos vermelhos representam os limites termodinâmicos para a conversão de CO₂ (11).

Por fim, a partir das Figs. 3c e 3d é possível observar que os materiais sintetizados com ureia apresentaram os melhores resultados catalíticos, com o método de síntese hidrotérmica assistida de agitação por tombamento sendo ligeiramente superior ao método estático. Esses resultados sugerem que a formação da fase hidrozincita metaestável favorece a produção de óxidos mistos mais ativos, promovendo a substituição isomórfica entre Cu-Zn,

aumentando a dispersão metálica nos óxidos e estimulando o crescimento de uma microestrutura porosa, resultando em uma maior área superficial disponível para a reação.

4. Conclusões

Catalisadores CuO-ZnO foram sintetizados por métodos de coprecipitação e tratamento hidrotérmico, tanto em modo estático quanto com agitação por tombamento, utilizando bicarbonato de sódio ou ureia como agentes precipitantes, visando sua aplicação na reação de hidrogenação de CO₂. Os testes catalíticos, combinados com as análises das propriedades dos materiais, indicaram que o método de coprecipitação com bicarbonato de sódio resultou em uma mistura de fases precursoras, que levou à formação de óxidos com mais baixa atividade catalítica. A adição de uma etapa hidrotérmica ao processo de coprecipitação promoveu a substituição isomórfica Cu-Zn nos precursores e o crescimento de microestruturas em modo estático, melhorando a atividade catalítica desses materiais. Entretanto, para a síntese com bicarbonato de sódio, a agitação por tombamento levou à destruição dessas microestruturas e à redução da atividade catalítica devido ao empacotamento de partículas. O uso de ureia como agente precipitante resultou na formação de óxidos mais ativos, independente da agitação por tombamento, com essa atividade sendo potencializada pela substituição isomórfica Cu-Zn nos precursores e pela formação de microestruturas organizadas. Dentre os catalisadores avaliados, aqueles sintetizados com ureia demonstraram o melhor desempenho, com a fase hidrozincita metaestável se destacando como a fase mais promissora.

Agradecimentos

Os autores agradecem o apoio financeiro do INCT - CAPICUA; CNPq (bolsa nº 151264/2023-6 e bolsa nº 153711/2024-8); ANP, FAPESP e MCTI, por meio do PRH-39.1 (ANP/FAPESP, bolsa nº 2024/10494-5 e bolsa nº 2024/11446-4), bem como à FAPESP (2017/08420-0, 2018/23601-3 e 2020/15230-5) e CAPES – Código de Financiamento 001.

Referências

- (1) Y. Wang, C. Huang, B. Sun, C. Quan, J. Wu, Z. Lin, Earth Sci Rev 129 **2014**, 136–147.
- (2) U.S.D. Scripps Institution of Oceanography, The Keeling Curve. https://keelingcurve.ucsd.edu/acessado em: 20/04/2024.
- (3) L. do N.R. de Paula, J.F. Gomes, J.M. Assaf, Catal Today 444 **2025**, 115014.
- (4) L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, Z. Huang, Y. Wang, J. Li, P. Xu, Journal of CO2 Utilization 66 **2022**, 102260.

- (5) K.B. Tan, K. Xu, D. Cai, J. Huang, G. Zhan, Chemical Engineering Journal 463 **2023**, 142262.
- (6) V. Eyberg, V. Dieterich, S. Bastek, M. Dossow, H. Spliethoff, S. Fendt, Energy Convers Manag 315 2024, 118728.
- (7) C. Filosa, X. Gong, A. Bavykina, A.D. Chowdhury, J.M.R. Gallo, J. Gascon, Acc Chem Res 56 **2023**, 3492–3503.
- (8) K. Ma, S. Zhao, M. Dou, X. Ma, C. Dai, ACS Catal 14 **2024**, 594–607.
- (9) A. Goeppert, M. Czaun, J.-P. Jones, G.K. Surya Prakash, G.A. Olah, Chem. Soc. Rev. 43 **2014**, 7995–8048.
- (10) S. Kanuri, S. Roy, C. Chakraborty, S.P. Datta, S.A. Singh, S. Dinda, Int J Energy Res 46 2022, 5503– 5522.
- (11) K. Stangeland, H. Li, Z. Yu, Ind Eng Chem Res 57 **2018**, 4081–4094.
- (12) K. Sun, C. Shen, R. Zou, C. Liu, Appl Catal B 320 2023, 122018.
- (13) G. Xie, R. Jin, P. Ren, Y. Fang, R. Zhang, Z. Wang, Appl Catal B 324 **2023**, 122233.
- (14) F.C.F. Marcos, F.M. Cavalcanti, D.D. Petrolini, L. Lin, L.E. Betancourt, S.D. Senanayake, J.A. Rodriguez, J.M. Assaf, R. Giudici, E.M. Assaf, Chemical Engineering Journal 427 2022, 130947.
- B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou,S. Deng, L. Li, Y. Huang, Ind Eng Chem Res 582019, 9030–9037.
- (16) C.S. Santana, L.F. Rasteiro, F.C.F. Marcos, E.M. Assaf, J.F. Gomes, J.M. Assaf, Molecular Catalysis 528 **2022**, 112512.
- (17) T. Kamsuwan, C. Krutpijit, S. Praserthdam, S. Phatanasri, B. Jongsomjit, P. Praserthdam, Heliyon 7 **2021**.
- (18) X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu,S. Wang, J. Mater. Chem. 21 2011, 349–356.
- (19) D.A. Almasri, R. Essehli, Y. Tong, J. Lawler, RSC Adv 11 2021, 30172–30182.
- (20) S. Ghose, Acta Crystallogr 17 **1964**, 1051–1057.
- (21) M. Behrens, F. Girgsdies , Z Anorg Allg Chem 636 **2010**, 919–927.
- (22) E.L. Belokoneva, Yu.K. Gubina, J.B. Forsyth, Phys Chem Miner 28 **2001**, 498–507.
- (23) J. Cai, C. Su, X. Yu, R. peng, R. Liu, X. Zhang, P. Shen, D. Liu, Miner Eng 177 2022, 107368.