

Melhoria catalítica de óleo de algas via hidrodesoxigenação: um estudo comparativo dos sistemas Mo₂C/γ-Al₂O₃ e NiMo₂C/γ-Al₂O₃

Holman. M. Mesa¹, Vítor Rodrigo de Melo e Melo²; Pedro Lucas Oliveira Batista², João Monnerat Araujo Ribeiro de Almeida¹; Renata Martins Braga²; Pedro. N. Romano^{3*}

¹Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, Brasil 21941-909 ¹Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, Brasil. ²Laboratorio de Tecnologia Ambiental-Universidade Federal do Rio Grande do Norte

³Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, 19593, Rio de Janeiro, Brazil, 25240-005.

*pedro.romano@caxias.ufrj.br

Resumo/Abstract

RESUMO - Este estudo avalia os catalisadores Mo₂C/Al₂O₃ e NiMoC/Al₂O₃ na hidrodesoxigenação (HDO) do óleo de microalgas Scenedesmus sp. Ambos foram preparados por impregnação a incipiente umidade seguida de carburização. As análises (XRD, físisorção de N₂, NH₃-TPD, H₂-TPR e Raman) indicaram alta área superficial, acidez, mesoporosidade e formação da fase carbeto, com destaque para o NiMoC/Al₂O₃. Em condições otimizadas, os catalisadores alcançaram eficiências de HDO acima de 80%, com remoção de oxigênio de até 92% com NiMoC/Al₂O₃. Este catalisador apresentou maior seletividade para parafinas de cadeia média (C₁₂-C₁₉) e maior formação de hidrocarbonetos leves (C₁-C₄), sugerindo atividade de hidrogenólise. O Mo₂C/Al₂O₃ favoreceu uma distribuição mais ampla de hidrocarbonetos, com 14% de compostos pesados (C₂₀⁺) e maior seletividade a CO₂, indicando via de descarboxilação. A incorporação de Ni promoveu craqueamento e seletividade a hidrocarbonetos tipo querosene, mostrando potencial para a produção de biocombustíveis renováveis.

ABSTRACT - This study evaluates Mo₂C/Al₂O₃ and NiMoC/Al₂O₃ catalysts in the hydrodeoxygenation (HDO) of *Scenedesmus sp.* oil micro algae. Both materials were prepared by incipient wetness impregnation followed by carburization. Characterization (XRD, N₂ physisorption, NH₃-TPD, H₂-TPR, and Raman) confirmed enhanced surface area, acidity, mesoporosity and carbide phase especially for NiMoC/Al₂O₃. Under optimized conditions, both catalysts reached HDO efficiencies above 80%, with oxygen removal up to 92% for NiMoC/Al₂O₃. This catalyst showed superior activity in producing mid-chain paraffins (C₁₂-C₁₉), high acidity, and greater light hydrocarbon formation (C₁-C₄), indicating enhanced hydrogenolysis. Mo₂C/Al₂O₃ yielded broader hydrocarbon distributions and 14% of heavy products (C₂₀+), with limited cracking and selectivity to CO₂, suggesting decarboxylation pathways. Ni incorporation favored hydrocracking and selectivity toward jet-fuel-range hydrocarbons, showing promise for renewable fuel production from algal oil.

Keywords: Hydrodeoxygenation (HDO), algae oil, Mo₂C catalysts, NiMo₂C, renewable fuels.

Introdução

As microalgas, como Scenedesmus sp., destacam-se como fonte promissora de biocombustíveis devido à alta produtividade lipídica e cultivo em áreas não convencionais. ¹ No entanto, o óleo extraído possui alto teor de oxigênio e acidez, o que limita seu uso direto como combustível.² A hidrodesoxigenação (HDO) catalítica surge como solução eficiente para melhorar suas propriedades.³ Apesar do uso difundido de catalisadores sulfetados (CoMo, NiMo), estes demandam sulfetação contínua e sofrem desativação. Catalisadores à base de carbonetos de molibdênio (Mo₂C) têm se mostrado alternativas promissoras por sua estabilidade e atividade semelhante à de metais nobres especialmente na clivagem de ligações C-O.4 A adição de níquel (NiMo₂C/Al₂O₃) favorece a dispersão metálica e o equilíbrio entre hidrogenação e desoxigenação. Este estudo compara o desempenho de Mo₂C/Al₂O₃ e NiMo₂C/Al₂O₃ na

HDO do óleo de Scenedesmus sp., focando na eficiência de remoção de oxigênio e seletividade dos produtos.

Experimental

Extração e Caracterização do Óleo de Scenedesmus sp.

O óleo de *Scenedesmus sp.* foi extraído por método assistido por solventes com ruptura celular e extração sequencial. A caracterização incluiu GC-FID, GC-MS, RMN, TGA, poder calorífico (HHV), CHN, teor de O, acidez, umidade e macronutrientes

Síntese e Caracterização dos Catalisadores.

Os catalisadores Mo₂C/Al₂O₃ e NiMo₂C/Al₂O₃ foram sintetizados por impregnação, calcinação e carburização a 650 °C. Foram caracterizados por TPR-H₂, DRX, adsorção de N₂, TPD-NH₃ e Raman.

Reações de hidrodesoxigenação (HDO.

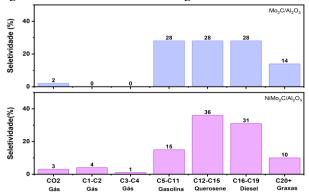
As reações foram realizadas em reator batelada a $350\,^{\circ}\text{C}$, $80\,\text{bar}$ de H_2 por $6\,\text{h}$, com mistura modelo óleo/n-

heptano (25:75 wt%) e razões óleo: catalisador de 12:1, 6:1 e 3:1.


Análises pós-reação

Os produtos gasosos foram analisados por GC-TCD/FID; os líquidos, por GC-FID, GC-MS e FTIR. Avaliaram-se acidez, densidade, composição elementar e eficiência de HDO com base na remoção de oxigênio.

Resultados e Discussão


A caracterização do óleo de *Scenedesmus sp.* revelou elevado potencial energético (HHV de 33,18 MJ/kg), mas também alta acidez (8%) e teor de oxigênio (\sim 12%), exigindo desoxigenação catalítica. As análises confirmaram a predominância de cadeias C_{16} – C_{20} (ácidos palmítico, linoleico e oleico), presença de dilinoleato de glicerila e 6,8% de cinzas, indicando uma matriz complexa e termicamente instável.

Os espectros de FTIR (Figura 1) mostraram redução das bandas de carbonilas (aprox. 1600-1750 cm⁻¹) e ésteres (aprox. 1200 cm⁻¹) com a diminuição da razão óleo: catalisador, confirmando a eliminação de grupos oxigenados.

Figura 1. Espectros de FT-IR dos produtos de HDO do óleo de algas utilizando Mo₂C/Al₂O₃ em diferentes razões óleo/catalisador: (a) matéria-prima; (b) 12:1; (c) 6:1; e (d) 3:1.

A seletividade dos produtos (Figura 2) mostrou que o catalisador NiMo₂C/Al₂O₃ favoreceu a formação de parafinas C₁₂-C₁₅ e hidrocarbonetos leves (C₁-C₄), sugerindo maior atividade de hidrogenólise.

Figura 2. Distribuição dos produtos de HDO utilizando os catalisadores Mo₂C/Al₂O₃ e NiMo₂C/Al₂O₃ com razão massa óleo/catalisador de 3:1.

Já com o catalisador de Mo₂C/Al₂O₃ resultou em formação de frações pesadas. A presença de CO₂ na fase gasosa aponta vias de descarboxilação.

Os dados da Tabela 1 indicam reduções expressivas na acidez (até 0,8%) e no teor de oxigênio (até 0%) com o catalisador NiMo₂C/Al₂O₃. A eficiência da HDO variou entre 80% e 100%, sendo máxima na razão óleo:catalisador de 3:1. Todos os produtos tratados apresentaram melhorias nas propriedades físico-químicas, com diminuição da densidade e ausência de nitrogênio detectável.

Tabela 1. Propriedades da matéria-prima e dos produtos de HDO, obtidos usando a razão (3:1) - óleo - catalisador

Produto	Acidez	Densidade	Análise Elementar				EC .v .
	(%)	(g/cm^3)	О	С	Н	N	Eficiência HDO (%)
			(%)	(%)	(%)	(%)	про (%)
Carga	5.0	0.72578	5.0	82	14	1.0	NR
Produto ^(a)	0,8	0,70177	0.7	84	14	0.6	84
Produto(b)	0,8	0,70809	0.0	84	14	0.5	100

Produto^(a): usando o catalisador Mo₂C/Al₂O₃ e Produto^(b) NiMo₂C/Al₂O₃,

Conclusões

O catalisador NiMo₂C/Al₂O₃ apresentou maior eficiência de desoxigenação e seletividade para hidrocarbonetos leves e frações de gasolina e querosene, evidenciando atividade de hidrogenólise. Ambos os catalisadores promoveram significativa melhoria das propriedades do óleo de algas, mostrando-se promissores para a produção de biocombustíveis renováveis com perfis ajustáveis.

Agradecimentos

Os autores agradecem o apoio técnico e financeiro da Petrogal Brasil S.A. (JointVenture Galp | Sinopec) e à promoção de Pesquisa, Desenvolvimento e Inovação (P,D&I) no Brasil pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP).

Referências

- Mu, D. et al. Environ. Sci. Technol. 48, 11696–11704 (2014).
- 2. Ardiyanti, A. R. et al. Appl. Catal. Gen. 449, 121–130 (2012).
- 3. Chaudhari, R. V.et.al.Ind. Eng. Chem. Res. **52**, 15226–15243 (2013).
- 4. Gil, A, et.al. Ind. Eng. Chem. Res. 63, 11759–11775 (2024).