



# Óxidos Mistos à base de Lantânia e Céria Como Catalisadores Para o Acoplamento Oxidativo de Metano (OCM).

Tomás G. Quintanilha<sup>1</sup>, Jonas S. Albuquerque<sup>1</sup>, Leonardo C. Martins<sup>1</sup>, Fábio B. Passos<sup>1</sup>, Ludmila da P.C. Silva<sup>1</sup>, Carlos A. Ortiz-Bravo<sup>1\*</sup>.

<sup>1</sup>Programa de Pós-graduação em Química – PPGQ, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil. \*E-mail: carlosortiz@id.uff.br.

# Resumo/Abstract

RESUMO – A aplicação industrial do Acoplamento Oxidativo de Metano (OCM) requere o desenvolvimento de catalisadores que maximizem o rendimento a hidrocarbonetos C<sub>2</sub> (*Y*<sub>C2</sub>). Óxidos mistos à base de Ce e La tem sido propostos como catalisadores promissores por combinar a alta reatividade da CeO<sub>2</sub> com a alta seletividade da La<sub>2</sub>O<sub>3</sub>. Neste trabalho, os catalisadores Na-CeO<sub>2</sub>, Na-La<sub>0,5</sub>Ce<sub>0,5</sub>O<sub>2-δ</sub> e Na-La<sub>2</sub>O<sub>3</sub> foram sintetizados por meio do método Pechini e caracterizados por DRX, fisissorção de N<sub>2</sub>, TGA e espectroscopias Raman, UV-Vis e CH<sub>4</sub>-TPD-DRIFTS. A incorporação de La<sup>3+</sup> na amostra Na-La<sub>0,5</sub>Ce<sub>0,5</sub>O<sub>2-δ</sub> é confirmada pelo deslocamento das reflexões da CeO<sub>2</sub> no DRX e pelo aumento da energia de *band gap*. A dopagem com La<sup>3+</sup> induz a formação de vacâncias de oxigênio, como evidenciado pelas análises de espectroscopia Raman. O óxido misto Na-La<sub>0,5</sub>Ce<sub>0,5</sub>O<sub>2-δ</sub> apresenta formação de radicais metil em temperaturas relativamente baixas (cerca de 400 °C) e alcança maior *Y*<sub>C2</sub> em comparação com catalisadores não dopados.

Palavras-chave: OCM, Óxidos Mistos, Vacâncias de Oxigênio.

ABSTRACT - The industrial application of Oxidative Coupling of Methane (OCM) requires developing catalysts to maximize  $C_2$  hydrocarbon yield ( $Y_{C2}$ ). Ce- and La-based mixed oxides based have been proposed as promising catalysts due to the combination of the high reactivity of  $CeO_2$  with the high selectivity of  $La_2O_3$ . In this work, Na- $CeO_2$ , Na- $La_{0.5}Ce_{0.5}O_{2-\delta}$  e Na- $La_2O_3$  catalysts were synthesized using the Pechini method and characterized by X-ray diffraction (XRD),  $N_2$  physisorption, thermogravimetric analysis (TGA), and Raman, UV-Vis, and  $CH_4$ -TPD-DRIFTS spectroscopies. The incorporation of  $La^{3+}$  into the  $CeO_2$  matrix in the Na- $La_{0.5}Ce_{0.5}O_{2-\delta}$  catalyst was confirmed by the shift in XRD reflections and the increase in band gap energy. Doping with  $La^{3+}$  induces the formation of oxygen vacancies, as evidenced by Raman spectroscopy. The mixed oxide Na- $La_{0.5}Ce_{0.5}O_{2-\delta}$  exhibits methyl radical formation at relatively low temperatures (around 400 °C) and achieves a higher  $C_2$  hydrocarbon yield  $Y_{C2}$  compared to undoped catalysts.

# Keywords: OCM, Mixed Oxides, Oxygen Vacancies.

# Introdução

O Acoplamento Oxidativo do Metano (OCM, do Inglês, Oxidative Coupling of Methane) é uma rota estratégica para a produção de etileno, a principal matéria-prima da indústria petroquímica. Nesse processo, O<sub>2</sub> é alimentado simultaneamente com CH<sub>4</sub> em presença de catalisadores óxidos (1). Os esforços atuais concentrassem no desenvolvimento de catalisadores capazes de ativar o CH<sub>4</sub> e limitar as reações de combustão (CO<sub>x</sub>), maximizando assim o rendimento para hidrocarbonetos C<sub>2</sub>.

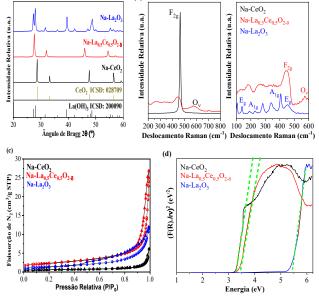
Catalisadores à base de óxidos de terras raras têm se destacado por sua reatividade e seletividade superiores. Nesse contexto, a formulação de catalisadores misturando óxidos redutíveis e não redutíveis, surge como uma abordagem promissora para otimizar a conversão do CH<sub>4</sub> e seletividade para hidrocarbonetos C<sub>2</sub> (2-4).

O presente trabalho investiga sistematicamente a síntese de óxidos mistos de La e Ce como alternativa de ativação modulada do CH<sub>4</sub>, visando maiores rendimento de etileno em OCM.

# Experimental

Síntese e caracterização dos catalisadores

Óxidos mistos Na-CeO<sub>2</sub>, Na-La<sub>0,5</sub>Ce<sub>0,5</sub>O<sub>2- $\delta$ </sub> e Na-La<sub>2</sub>O<sub>3</sub> foram sintetizados pelo método Pechini (5), secos em 120 °C por 12 h e calcinados em mufla 800 °C (5 °C/min) por 2 h. As amostras foram caracterizadas por DRX, fisissorção de N<sub>2</sub>, TGA e espectroscopias Raman, UV-Vis e CH<sub>4</sub>-TPD-DRIFTS. O desempenho OCM em estado estacionário a 700 °C foi medido usando 100 mL min<sup>-1</sup> de uma mistura CH<sub>4</sub>:O<sub>2</sub>: N<sub>2</sub> = 2:1:2. A conversão de CH<sub>4</sub> ( $X_{CH4}$ ) , seletividade ( $S_{C2}$ ) e rendimento ( $Y_{C2}$ ) para hidrocarbonetos C<sub>2</sub> foi medida por GC usando as Eqs. 1-3, respectivamente.

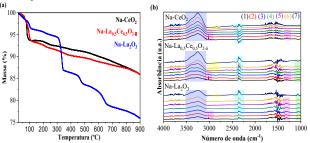

$$\begin{split} &X_{CH4} = \left(F_{CH_{4,in}} - F_{CH_{4,out}}\right) \cdot 100 / F_{CH_{4,in}} & \text{Eq. 1} \\ &S_{C2} = 100 \cdot 2 (F_{C_2H_4} + F_{C_2H_6}) / 2 \left(F_{C_2H_4} + F_{C_2H_6}\right) + F_{CO_x} & \text{Eq. 2} \\ &Y_{C2} = X_{CH4} \cdot S_{C2} / 100 & \text{Eq. 3} \end{split}$$

# Resultados e Discussão

A Fig.1a mostra os difratogramas dos catalisadores sintetizados. Na-CeO<sub>2</sub>, Na-La<sub>0,5</sub>Ce<sub>0,5</sub>O<sub>2- $\delta$ </sub> exibem unicamente reflexões associados à fase CeO<sub>2</sub> (ICSD



028709). As reflexões de Na-La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>2-δ</sub> se deslocam para ângulos 20 menores, sugerindo a expansão da célula unitária devido à substituição do Ce<sup>4+</sup> (raio iônico ~ 0,97 Å) pelo La<sup>3+</sup> (raio iônico ~ 1,16 Å). Na-La<sub>2</sub>O<sub>3</sub> exibe reflexões associadas à fase La(OH)3 (ICSD 200090), resultante da interação do La<sub>2</sub>O<sub>3</sub> com a umidade do ambiente. O tamanho médio do cristalito foi calculado usando a Equação de Scherrer nas reflexões (111), (220) e (311) da CeO<sub>2</sub>, resultando em 38 e 25 nm para Na-CeO<sub>2</sub>, Na-La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>2-δ</sub>, respetivamente. No catalisador Na-La<sub>2</sub>O<sub>3</sub> foram usadas as reflexões (100), (110) e (101) da La(OH)<sub>3</sub>, resultando em 26 nm. Na-CeO<sub>2</sub>, Na-La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>2-δ</sub> exibem bandas Raman (Fig.1b) em 580 e 465 cm<sup>-1</sup> associadas às vibrações F<sub>2g</sub> e O<sub>v</sub> da CeO2. A razão de intensidades Ov/F2g é maior em Na-La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>2-δ</sub>, sugerindo a introdução de vacâncias de oxigênio pela dopagem com La3+. Na-La2O3 exibe unicamente bandas Raman associadas à fase La(OH)3 de acordo com os resultados de DRX. As análises de fisissorção de N<sub>2</sub> (Fig.1c) mostram que os catalisadores são macroporos e de baixa área específica (< 10 m<sup>2</sup> g<sup>-1</sup>, calculado pelo método BET). Na-La<sub>0.5</sub>Ce<sub>0.5</sub>O<sub>2-δ</sub> exibe uma energia de band gap (Fig.1d) intermedia (3,4 eV) quando comparado com Na-CeO<sub>2</sub> (3,3 eV) e do Na-La<sub>2</sub>O<sub>3</sub> (5,5 eV), sugerindo que a dopagem com La<sup>3+</sup> favorece a transferência de elétrons do orbital de valência 2p do O<sup>2-</sup> para os orbitais de condução 5d ou 4f do La, aumentando a reatividade da  $CeO_{2}$  (4).




**Figura 1.** (a) Difratogramas de Raios-X, (b) Espectros Raman, (c) Isotermas de Fisissorção de N<sub>2</sub> e (d) Gráfico de Tauc dos catalisadores sintetizados.

Análises de TGA (Fig.2a) mostram eventos de decomposição térmica, em especial para o catalisador Na-La<sub>2</sub>O<sub>3</sub>, relacionados à transição de fase do hidróxido para oxido de La. Os espectros CH<sub>4</sub>-TPD-DRIFTS (Fig.2b)



confirmam a adsorção de  $CH_4$  em todos os catalisadores. Contudo, unicamente o catalisador  $Na-La_{0.5}Ce_{0.5}O_{2-\delta}$  exibe a formação de radicais metil durante a dessorção em  $400\,^{\circ}C$ . Os radicais metil são os intermediários reportados para formação de etano em OCM.



**Figura 2.** (a) TGA e (b) Espectros CH<sub>4</sub>-TPD-DRIFTS dos catalisadores. (1)-(4) representam a adsorção do metano à 100 °C após 5, 15, 30 e 45 minutos, respectivamente. (5)-(7) denotam a dessorção do metano à 200, 300 e 400 °C, respectivamente.

A Tabela 1 mostra que Na-La<sub>0,5</sub>Ce<sub>0,5</sub>O<sub>2- $\delta$ </sub> exibe maior  $Y_{C2}$ . A presença de vacâncias de oxigênio na estrutura da céria pode favorecer a ativação seletiva do CH<sub>4</sub>.

Tabela 1. Desempenho OCM dos catalisadores sintetizados.

| Catalisador                                             | $X_{CH4}$ | $S_{C2}$ | $Y_{C2}$ |
|---------------------------------------------------------|-----------|----------|----------|
| Na-CeO <sub>2</sub>                                     | 12,1      | 23,5     | 2,8      |
| Na-La <sub>0,5</sub> Ce <sub>0,5</sub> O <sub>2-δ</sub> | 51,3      | 48,2     | 24,7     |
| Na-La <sub>2</sub> O <sub>3</sub>                       | 19,2      | 44,5     | 8,5      |

#### Conclusões

O método Pechini é eficiente na síntese de óxidos mistos, evitando a formação de fases segregadas. A incorporação de La³+ na matriz de CeO₂ foi confirmada pelo deslocamento das reflexões no padrão de DRX e pelo aumento da energia de *band gap*. A dopagem com La³+ induz a formação de vacâncias de oxigênio, como evidenciado pelas análises de espectroscopia Raman. O óxido misto Na-La₀,5Ce₀,5O₂- $\delta$  apresenta formação de radicais metil em temperaturas relativamente baixas (cerca de 400 °C) e alcança maiores  $\gamma$ <sub>C2</sub> em comparação com catalisadores não dopados.

# Agradecimentos

Os autores agradecem à FAPERJ (E-26/210.797/2024) e Laboratório de Espectroscopia LAME – UFF.

# Referências

- 1. J. Deboy, J. Catal, 1988, 113, 517–524.
- K.D. Campbell; H. Zhang; J.H. Lunsford, J. Phys. Chem, 1988, 92, 750–753.
- 3. J.-L. Dubois; C.J. Cameron, Appl. Catal, 1990, 67, 49–71.
- 4. C.A. Ortiz-Bravo; C.A. Chagas; F.S. Toniolo, *J. Nat. Gas Sci. Eng*, 96, **2021**.
- 5. M.P. Pechini, U.S. Patent 3231328 A, 1966.
- K.C. Petallidou; A.M. Efstathiou. Appl. Catal. B: Environ, 2013, 140, 333–347.