

Conversão de etanol em 1,3-butadieno catalisada por óxidos mistos

Pedro H. P. Lyra¹, Cristiane A. Henriques², Zilacleide S. B. Sousa^{1*}

²Programa de Pós-graduação em Engenharia Química, ¹Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brasil.

*Email: zilasousa@gmail.com

Resumo/Abstract

RESUMO - A crescente preocupação com a preservação do meio ambiente e a instabilidade nos preços do petróleo impulsionam a busca por rotas alternativas para a produção de produtos químicos de alto valor agregado a partir de fontes renováveis. Neste contexto, a conversão de etanol em 1,3-butadieno (1,3-BD) surge como uma rota promissora. Este trabalho investiga a síntese e caracterização de catalisadores de óxidos mistos à base de MgO-SiO₂, promovidos por óxidos de zinco e zircônio (ZnO-ZrO₂), preparados por mistura física (MF) e impregnação úmida (IU). Os resultados de DRX indicaram que o catalisador preparado por mistura física apresentou padrões de difração típicos da SiO₂ e do MgO com estrutura tipo periclásio, sugerindo maior cristalinidade, enquanto o preparado por impregnação úmida apresentou picos mais largos, indicando menor cristalinidade ou cristalitos menores. O catalisador ZnO-ZrO₂/MgO-SiO₂-MF demonstrou ser mais ativo e eficiente para a produção de 1,3-butadieno nas condições estudadas.

Palavras-chave: 1,3-butadieno, etanol, catalisadores, ZnO-ZrO₂/MgO-SiO₂.

ABSTRACT - The increasing concern with environmental preservation and the instability of oil prices drive the search for alternative routes for the production of high-value chemicals from renewable sources. In this context, the conversion of ethanol to 1,3-butadiene (1,3-BD) emerges as a promising route. This work investigates the synthesis and characterization of mixed oxide catalysts based on MgO-SiO₂, promoted by zinc and zirconium oxides (ZnO-ZrO₂), prepared by physical mixing (PM) and wet impregnation (WI). XRD results indicated that the catalyst prepared by physical mixing showed typical diffraction patterns of SiO₂ and MgO with periclase-type structure, suggesting higher crystallinity, while the catalyst prepared by wet impregnation showed broader peaks, indicating lower crystallinity or smaller crystallites. The ZnO-ZrO₂/MgO-SiO₂-PM catalyst demonstrated to be more active and efficient in 1,3-butadiene production under the studied conditions.

Keywords: 1,3-butadiene, ethanol, catalysts, ZnO-ZrO₂/MgO-SiO₂

Introdução

A crescente demanda por 1,3-butadieno (1,3-BD) e a busca por rotas sustentáveis tem impulsionado o desenvolvimento de processos baseados em fontes renováveis, como a conversão de etanol em 1,3-BD (ETB) (1). Óxidos mistos, especialmente MgO-SiO₂ promovidos por Zn e Zr, destacam-se por suas propriedades ácido-base ajustáveis, otimizando a atividade catalítica (2,3). Este trabalho investiga a influência do método de síntese (mistura física - MF e impregnação úmida - IU) nas propriedades físico-químicas e no desempenho catalítico de catalisadores MgO-SiO₂/ZnO-ZrO₂ na reação ETB, visando identificar a abordagem mais eficiente para a produção sustentável deste monômero.

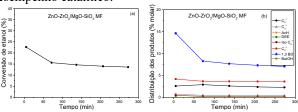
Experimental

Foram avaliados dois métodos de síntese para obtenção de precursores de óxidos mistos MgO-SiO₂: mistura física (MF) e impregnação úmida (IU), mantendo-se a razão molar MgO:SiO₂ fixa em 65:35. No método de impregnação úmida, utilizaram-se 5,55 g de MgO e 4,45 g de SiO₂, sendo a mistura agitada em água a 50 °C por 5 h. A suspensão obtida foi posteriormente aquecida a 100 °C e calcinada a

500 °C por 5 h sob fluxo de ar sintético (50 mL min⁻¹). Na rota por mistura física, o MgO (após calcinação) foi misturado com a sílica em almofariz por 1 h e, em seguida, a mistura foi calcinada a 500 °C por 6 h. Os óxidos de zircônio (1,5 % em massa) e zinco (0,5 % em massa) foram incorporados aos precursores por impregnação úmida, seguida de calcinação a 500 °C por 5h sob fluxo de ar sintético (50 mL min⁻¹), originando os sistemas catalíticos ZnO-ZrO₂/MgO-SiO₂ (MF) e ZnO-ZrO₂/MgO-SiO₂ (IU). A caracterização estrutural foi realizada por difratometria de raios X (Rigaku Miniflex II, 30 kV, 15 A), com varredura de 4,0 a 80° (20), passo de 0,02° e tempo de aquisição de 2 s. A análise de área superficial foi conduzida pela técnica BET, por adsorção/dessorção de N₂ a -196 °C, utilizando-se ASAP 2020 (Micromeritics). equipamento propriedades ácido-base foram investigadas por dessorção a temperatura programada (TPD) de NH3 e CO2, empregando misturas de 2,91% NH₃/He (30 mL·min⁻¹) e 4% CO₂/He (30 mL·min⁻¹), com adsorção a 150 °C (NH₃) e 100 °C (CO₂), e perfis de dessorção registrados até 500 °C. Os testes catalíticos foram realizados em fase gasosa, a pressão atmosférica, em reator de leito fixo, a 385 °C, com pressão parcial de etanol de 0,189 atm e velocidade espacial de 0,87 $g_{\text{etanol}} \cdot g_{c_{\text{at}}}^{-1} \cdot h^{-1}$.

Resultados e Discussão

Os resultados da difratometria de raios X (DRX) dos catalisadores preparados por mistura física (MF) e impregnação úmida (IU) revelaram diferenças significativas na cristalinidade e nas fases presentes. O difratograma de raios X do catalisador obtido por mistura física (ZnO-ZrO₂/MgO-SiO₂-MF) apresentou padrões de difração típicos da sílica (SiO₂) e do óxido de magnésio (MgO) com estrutura tipo periclásio, indicando uma major cristalinidade. Essa maior cristalinidade indica uma estrutura mais organizada, o que pode influenciar a dispersão dos óxidos metálicos e a acessibilidade dos sítios ativos. Em contraste, o catalisador preparado por impregnação úmida (ZnO-ZrO₂/MgO-SiO₂-IU) exibiu picos mais largos e menos definidos, sugerindo uma menor cristalinidade ou a formação de cristalitos menores. A menor cristalinidade pode levar a uma maior área de superfície exposta para os óxidos promotores (Zn e Zr), mas também pode indicar uma estrutura menos estável. Essa diferença na cristalinidade pode influenciar a dispersão dos óxidos metálicos e a acessibilidade dos sítios ativos, impactando a atividade catalítica (4).


A maior área BET da amostra MF (123 m²/g) em relação à IU (103 m²/g) pode ser atribuída à menor interação entre os óxidos, preservando a porosidade. Métodos como a impregnação úmida favorecem maior interação química e formação de fases mistas, o que pode reduzir a área específica. Esses efeitos estão de acordo com os dados relatados por Huang et al. (1) e Angelici et al. (2). A formação de fases mistas, como silicatos de magnésio, zinco ou zircônio, pode levar à oclusão de poros ou à formação de estruturas mais densas, diminuindo a área superficial disponível para a reação. A distribuição de poros também é crucial para a difusão dos reagentes e produtos, e a menor interação na amostra MF pode ter contribuído para uma porosidade mais eficiente, com maior acessibilidade aos sítios ativos.

A análise de dessorção a temperatura programada (TPD) de NH₃ e CO₂ mostrou que o catalisador ZnO-ZrO₂/MgO-SiO₂-MF apresentou 10,51 mmol NH₃ g⁻¹ e 0,78 mmol CO₂ g⁻¹, enquanto o ZnO-ZrO₂/MgO-SiO₂-IU apresentou 11,30 mmol NH₃ g⁻¹ e 0,58 mmol CO₂ g⁻¹. Esses valores sugerem que o método de preparação influencia a densidade total de sítios ácido-base, que são cruciais para a seletividade da reação de ETB.

A Figura 1 apresenta a conversão de etanol e distribuição de produtos ao longo do tempo de reação para o catalisador ZnO-ZrO₂/MgO-SiO₂-MF. O catalisador ZnO-ZrO₂/MgO-SiO₂-MF apresentou maior conversão de etanol no início da reação (23 %) e maior formação de 1,3-BD (15 %) em comparação com o catalisador preparado por impregnação úmida ($X_{\rm EtOH=}$ 15 %; 1,3-BD = 9 %).

O catalisador ZnO-ZrO₂/MgO-SiO₂-MF, com um balanço mais favorável entre sítios ácidos e básicos, pode promover a sequência de reações desejadas (desidrogenação, condensação aldólica e desidratação final) de forma mais eficiente. A presença de sítios ácidos e básicos em proporções adequadas é fundamental para catalisar essas etapas de forma eficiente e seletiva. Sítios ácidos (Brønsted e Lewis) atuam na desidratação e na formação de éter dietílico, enquanto sítios básicos são importantes para a desidrogenação e a condensação aldólica, sendo os sítios ácidos necessários para a desidratação do crotonaldeído a 1,3-butadieno (1, 3). Em contraste, o catalisador ZnO-ZrO₂/MgO-SiO₂-IU, com maior densidade total de sítios ácidos, pode ter uma distribuição de sítios ácidos que favorece a desidratação excessiva do etanol, levando à formação de etileno, um subproduto comum em reações de ETB com catalisadores excessivamente ácidos (2, 4). A otimização do balanço ácido-base, influenciado pelo método de preparação, é, portanto, um fator chave para o desempenho catalítico.

Figura 1. Conversão de etanol (a) e distribuição dos produtos (b) em função do tempo de reação (min).

Conclusões

Os testes catalíticos demostraram que o catalisador preparado por mistura física apresentou melhor desempenho em termos de atividade e produção de 1,3-butadieno nas condições estudadas. A maior cristalinidade e, possivelmente, uma melhor distribuição dos sítios ativos no catalisador de mistura física podem ter contribuído para seu desempenho superior.

Agradecimentos

Pedro H. P. Lyra agradece ao Cetreina, Cristiane A. Henriques e Zilacleide S. B. Sousa ao Prociência pelo apoio financeiro.

Referências

- 1. Huang, X.; Men, Y.; Wang, J.; Yuan, W.; Wang, Y.. *Catal. Sci. Technol.* **2017**, 7, 168–180.
- Angelici, C.; Velthoen, M. E. Z.; Weckhuysen, B. M.; Bruijnincx, P. C. A. Catal. Sci. Technol. 2015, 5, 3979-3990.
- 3. Larina, O. V.; Kyriienko, P. I.; Soloviev, S. O. *Theor. Exp. Chem.* **2016**, 52, 51-56.
- 4. Zhu, Q.; Wang, B.; Tan, T.. ACS Sustainable Chem. Eng. 2017, 5, 722–733.