

Efeito da etanolamina no microambiente de redução de CO₂

Jéssica Cristina de Almeida 1*, Cauê Ribeiro de Oliveira 1

¹ Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, 13561-206 São Carlos, SP, Brasil. * j.cristinal@outlook.com

Resumo/Abstract

RESUMO - A redução eletroquímica de CO₂ (CO₂ER) é uma tecnologia promissora para alcançar a meta global de descarbonização, convertendo o CO₂ em produtos químicos de valor agregado. Contudo, a baixa solubilidade do CO₂ em água e a competição com a reação de evolução de hidrogênio (HER) limitam a eficiência do processo. Esta pesquisa visa otimizar a CO₂ ER por meio da engenharia do microambiente reacional do eletrodo de trabalho. A metodologia proposta envolve a síntese de um hidrogel de poliacrilamida incorporando etanolamina (ETA), depositado sobre uma fina camada hidrofóbica sobre um catalisador de espuma de cobre (Cu foam). Como base fraca e aduto de CO₂, a ETA promove a captura e difusão do reagente, enquanto o aumento do pH local, desfavorece a HER e direciona a seletividade para produtos de CO₂ER. A metodologia proposta visa o aumento da densidade de corrente, eficiência Faradaica e estabilidade do catalisador a longo prazo. Adicionalmente, esperase viabilizar a utilização de fontes de CO₂ de baixa pureza, como gases de combustão, o que representa um avanço significativo para a aplicação industrial.

Palavras-chave: Redução eletroquímica de CO₂, Microambiente reacional, Etanolamina, Célula MEA.

ABSTRACT - Electrochemical CO₂ reduction (CO₂ER) is a promising technology for achieving the global decarbonization goal by converting CO₂ into value-added chemicals. However, the low solubility of CO₂ in water and competition with the hydrogen evolution reaction (HER) limit process efficiency. This research aims to optimize CO₂ER through engineering the reaction microenvironment of the working electrode. The proposed methodology involves synthesizing a polyacrylamide hydrogel incorporating ethanolamine (ETA), deposited over a thin hydrophobic layer on a copper foam (Cu foam) catalyst. As a weak base and CO₂ adduct, ETA promotes reactant capture and diffusion, while the increase in local pH disfavors HER and directs selectivity toward CO₂ER products. The proposed methodology aims to increase current density, Faradaic efficiency, and long-term catalyst stability. Additionally, it is expected to enable the use of low-purity CO₂ sources, such as combustion gases, which represents a significant advance for industrial application.

Keywords: CO2 electroreduction, Reaction microenvironment, Ethanolamine, MEA cell

Introdução

A crescente urgência em descarbonizar a economia global tem impulsionado a busca por tecnologias que possam mitigar as emissões de CO2. Nesse contexto, a redução eletroquímica de CO2 surge como uma abordagem promissora, possibilitando a conversão deste poluente em produtos químicos de valor agregado ou em matérias-primas essenciais para a indústria. Entretanto, apesar do potencial da CO2ER, sua viabilidade ainda enfrenta desafios significativos. Um dos principais obstáculos é a baixa solubilidade do CO2 em água, com uma concentração máxima de aproximadamente 33 mmol L⁻¹ em condições ambiente e pH neutro. Consequentemente, a difusão de CO₂ até a interface do eletrodo é lenta e insuficiente, resultando em uma diminuição da concentração do reagente ao longo do tempo de reação. Além disso, a presença de água no meio reacional favorece a reação de evolução de hidrogênio, que compete com a redução de CO₂.

Tradicionalmente, os esforços para otimizar a CO₂ER têm se concentrado na modificação da composição, e morfologia dos catalisadores. No entanto, a persistência dos desafios na produção de eletrodos eficientes, seletivos e estáveis indica que apenas essas modificações podem não ser suficientes. Estudos recentes têm demonstrado o impacto significativo da engenharia do microambiente reacional na otimização dos processos de eletrorredução de CO₂. (1) Esta abordagem representa uma evolução necessária na pesquisa de CO₂ER, indo além da otimização do material catalítico para focar nas condições na superfície do catalisador.

Neste trabalho, estamos estudando modificações de superfície do eletrodo de trabalho, visando otimizar o microambiente reacional e minimizar os desafios inerentes à baixa concentração de reagentes e à competição com a HER. Para isso, eletrodos formados por malha de cobre serão recobertos por uma camada hidrofóbica de PTFE e uma camada de hidrogel contendo ETA. A presença da ETA deverá modular o pH local e aumentar a concentração de reagente no microambiente de reação, permitindo a redução

da concentração do gás que alimenta o sistema eletroquímico.

A estratégia pode ser adaptável a uma variedade de catalisadores, buscando aprimorar o desempenho na eletrorredução de CO_2 e reduzir a necessidade do uso de CO_2 de alta pureza para alimentação do sistema eletroquímico.

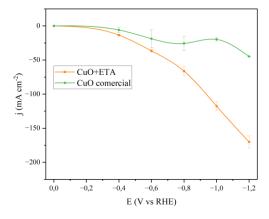
Experimental

Preparo do catalisador

Para o preparo dos catalisadores, uma placa de espuma de cobre 110 ppi com 2 mm de espessura é colocada em uma mufla a 340 °C por 3 h para formação de uma camada de óxido na superfície.

Modificações de superfície

Após a queima para formação do óxido, a camada hidrofóbica é depositada sobre a espuma de cobre via *spray* coating usando uma dispersão de PTFE 25%. A formação do hidrogel é feita conforme o trabalho de Ferrag et al.. (2) O processo inicia-se pela dissolução de acrilamida e N,N'-metilenobisacrilamida em água. Em seguida, CO₂ é borbulhado na solução por aproximadamente quatro minutos, induzindo a polimerização. A adição de ETA ao hidrogel será realizada utilizando diferentes concentrações para verificar a estabilidade do hidrogel e a eficiência do processo de redução de CO₂.


Medidas eletroquímicas

As medidas de redução eletroquímica de CO₂ serão conduzidas utilizando uma célula do tipo conjunto membrana eletrodo (MEA), espuma de níquel como anodo e KOH 1M como anólito.

Resultados e Discussão

Resultados preliminares utilizando catalisadores de CuO funcionalizados com ETA (3) demonstraram que a presença deste componente na superfície dos eletrodos de trabalho influenciou positivamente na densidade de corrente e na estabilidade do sistema (figura 1). Este resultado é um indicativo de que a adição de ETA no ambiente próximo a interface do catalisador pode alterar o microambiente.

Figura 1. Avaliação preliminar do efeito da etanolamina no microambiente de reação de um eletrodo de CuO sintetizado com ETA comparado com um eletrodo montado com CuO comercial.

Conclusões

Como trabalho recente, os experimentos encontram-se em fase inicial de investigação, sendo necessário o estudo da espessura da camada hidrofóbica e a formulação adequada do hidrogel contendo ETA. Uma vez determinados esses parâmetros, os próximos passos incluirão testes de estabilidade a longo prazo e a avaliação do processo utilizando CO₂ de pureza reduzida para avaliar os efeitos destas modificações de microambiente no processo de redução de CO₂.

Agradecimentos

Agradecimentos à agência de fomento FAPESP processo 2024/16381-8.

Referências

- D. Wanga; J. Maoa; C. Zhanga; J. Zhanga; J. Lic; Y. Zhanga; Y. Zhud, eScience. 2023, 3, 100119-100127
- 2. C. Ferrag; M. Abdinejad; K. Kerman, Canadian Journal of Chemistry. 2020, 98, 66-73.
- 3. J. C. de Almeida; O. F. Lopes; M. Shviro; G.T.S.T. da Silva; C. Ribeiro; V. R. de Mendonça, *Nanoscale*. **2024**, *16*, 18455-18467.