

Aplicação de catalisadores zeolíticos multifuncionais para conversão direta do furfural em γ-valerolactona

Yuri L. Lima^{1*}, Luiz H. Vieira¹, José M. Assaf², Elisabete M. Assaf¹

¹Universidade de São Paulo, São Carlos, Brasil. Email: yurilima_10@usp.br*

²Universidade Federal de São Carlos, São Carlos, Brasil

Resumo/Abstract

RESUMO - A evolução de processos de conversão catalítica dos derivados da biomassa lignocelulósica é de grande interesse da indústria química por serem precursores da síntese de uma série de compostos de relevância, como, por exemplo, a γ -valerolactona. Este projeto busca o desenvolvimento de processos de conversão direta do furfural em γ -valerolactona utilizando catalisadores multifuncionais baseados em estruturas zeolíticas lamelares. Serão empregados catalisadores que combinem sítios ácidos de Brønsted e Lewis de estruturas bi- e tridimensionais, além de materiais contendo clusters de metais de transição encapsulados nos microporos. Com as combinações dos diferentes sítios ácidos de Lewis, como os sítios metálicos, e/ou sítios de Brønsted, busca-se adicionar funcionalidades ao catalisador que sejam capazes de superar as etapas de hidratação/desidratação e transferência de hidrogênio durante a reação em etapa única.

Palavras-chave: Biomassa, MCM-22, Furfural, γ-Valerolactona, Catalisadores Multifuncionais.

ABSTRACT - The evolution of catalytic conversion processes for lignocellulosic biomass derivatives is of great interest to the chemical industry because they are precursors for the synthesis of a series of essential compounds, such as γ -valerolactone. This project aims to develop direct furfural to γ -valerolactone conversion processes using multifunctional catalysts based on lamellar zeolitic structures. Catalysts will be employed that combine Brønsted and Lewis acid sites from bi- and three-dimensional structures, in addition to materials containing transition metal clusters encapsulated in the micropores. By combining different Lewis acid sites, such as metallic sites, and/or Brønsted sites, the aim is to add functionalities to the catalyst that can overcome the hydration/dehydration and hydrogen transfer steps during the single-step reaction.

Keywords: Biomass, MCM-22, Furfural, γ-Valerolactone, Multifunctional Catalysts

Introdução

A dependência de combustíveis fósseis causa graves problemas ambientais. A biomassa, uma fonte de energia renovável abundante e versátil, surge como alternativa.

Um importante composto derivado da biomassa é o furfural (FF), precursor de aditivos químicos e biocombustíveis, sendo a γ-valerolactona (GVL) um dos possíveis produtos que se destacam. Suas características, como fácil armazenamento e transporte, a tornam um candidato ideal para a produção de energia e outros produtos. Além disso, a GVL é uma plataforma química versátil, podendo ser convertida em uma ampla gama de produtos de alto valor agregado, como solventes, aditivos para combustíveis, e até mesmo precursores para polímeros. Sua obtenção ocorre por reações complexas que exigem catalisadores com a proporção ideal de sítios de desidratação e hidrogenação. Para isso, catalisadores bifuncionais são a chave. Estudos mostram que a combinação de sítios ácidos de Brønsted e Lewis atua sinergicamente, aumentando o rendimento para GVL.

Este trabalho propõe a síntese de catalisadores bifuncionais zeolíticos MCM-22, derivados de precursores

lamelares, contendo sítios ácidos de Brønsted e clusters de metais de transição, para a produção de GVL a partir do furfural.

Experimental

A síntese do precursor lamelar MCM-22P foi realizada pelo método hidrotérmico adaptado da literatura (1). Em uma síntese típica, adiciona-se NaOH à água destilada sob constante agitação mecânica até completa dissolução, e $(Na_2O)_{1,5}(Al_2O_3).1H_2O.$ Em seguida, hexametilenimina são adicionados gota a gota à temperatura ambiente por 30 min. Finalmente, a sílica pirolisada é adicionada lentamente a 50 °C, seguida de agitação por 2 h. Em seguida, o gel é envelhecido a 50 °C por 24 h, e depois levado a uma autoclave por 24 h a 100 °C e 72 h a 150 °C. Finalmente, o material é lavado com uma solução de ácido acético 10% em massa até pH 7 e seco a 100 °C por 24 h. O pó resultante é macerado e calcinado a 550 °C durante 5 h sob uma rampa de aquecimento de 2 °C min⁻¹, resultando na zeólita MCM-22.

A bifuncionalização da zeólita MCM-22 foi feita por impregnação com Zr ou Cu, seguida de calcinação a 550 °C

por 5 h (rampa de 2 °C min⁻¹). Quatro amostras foram nomeadas pela porcentagem mássica do metal na zeólita MCM-22 (ex: 0,8Zr/M tem 0,8% de Zr). 0,8Zr/M e 0,6Cu/M foram preparadas por impregnação incipiente, enquanto 10Zr/M e 10Cu/M por impregnação úmida. Para comparação, ZrO₂ e CuO puros foram obtidos pela calcinação de seus precursores, e Zr(OH)₄ foi preparado por precipitação com NH₄OH.

Testes catalíticos foram conduzidos em um reator em batelada, onde 0,1 g de amostra foram reduzidos em H₂ a 400 °C. As amostras foram então transferidas para o reator contendo 10 mL de solução de furfural 0,02 mol L⁻¹ em isopropanol. O reator foi aquecido a 170 °C e, após atingir a pressão autógena, foi adicionado N₂ até 40 bar. A mistura foi agitada a 400 rpm por 5 h. Para os testes com Zr(OH)₄, 0,02 g desse composto foram macerados com as amostras antes de serem submetidas às mesmas condições reacionais. Por exemplo, "10Zr/M+Zr(OH)₄" indica que o catalisador 10Zr/M foi macerado com Zr(OH)₄.

Resultados e Discussão

A conversão catalítica de furfural (FF) para γ-(GVL) foi investigada utilizando valerolactona preparados. catalisadores Os principais produtos identificados foram álcool furfurílico (FA), ácido levulínico (LA), isopropil levulinato (IPL) e GVL. A MCM-22 pura apresentou uma conversão de apenas 2,4%, sendo seletiva para IPL (76,3%). A bifuncionalização da zeólita com sítios metálicos levou a um aumento significativo na conversão de FF, como observado para os catalisadores 0,8Zr/M e 0,6Cu/M (72,1% e 40,2%, respectivamente). Mesmo com uma pequena quantidade de metal, esses catalisadores foram capazes de realizar a etapa inicial da conversão do FF em FA. No entanto, apresentaram maior seletividade para IPL (90,7% e 80,2%, respectivamente), o que pode ser atribuído a um balanço inadequado de sítios ácidos de Lewis e Brønsted. A conversão de IPL para GVL é particularmente dependente de sítios ácidos de Lewis, e a falta de sítios suficientes ou ativos pode explicar o acúmulo de IPL (2). Para os catalisadores com maiores teores metálicos, a conversão de FF não apresentou diferenças significativas (76,7% para 10Zr/M e 46,2% para 10Cu/M). Contudo, a seletividade para GVL, mais acentuado para catalisadores contendo Zr suportados na zeólita (de 1,1% para 55,4%) e menos expressivo para catalisadores com Cu (de 3,1% para 7,6%).

Considerando o acúmulo de IPL em muitas amostras, foi realizada uma mistura física dos catalisadores com Zr(OH)4, uma vez que Liu e colaboradores demonstraram que, em condições reacionais semelhantes, o Zr(OH)4 puro é capaz de converter 100% do IPL para GVL (3). Para os catalisadores físicamente misturados com Zr(OH)4 foi verificado um aumento significativo tanto da conversão de FF quanto da seletividade para GVL. Comparando as amostras 10Zr/M e 10Zr/M+Zr(OH)4, nota-se um aumento

de 76,7 % para 100% de conversão de furfural e um aumento de 55,4 % para 88,9 % da seletividade para GVL. Para as amostras 10Cu/M e 10Cu/M+ Zr(OH)4, a conversão de FF foi de 46,2 % para 88,8 %, enquanto a seletividade para GVL passou de 7,6 % para 72,9 %. Isso mostra que a presença do Zr(OH)4 foi capaz de impedir o acúmulo de IPL que ocorreu nos primeiros testes catalíticos, favorecendo a formação do GVL.

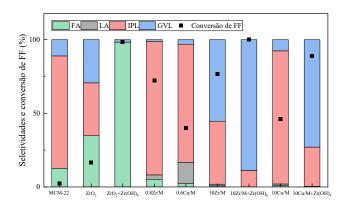


Figura 1. Testes catalíticos.

Conclusões

Nos testes catalíticos ZrO₂ e MCM-22 puros mostraram baixa conversão e seletividade para GVL. A bifuncionalização aumentou a conversão, de maneira mais acentuada para os catalisadores com maior teor metálico, porém com acúmulo de IPL. Crucialmente, a mistura física dos catalisadores com Zr(OH)₄ aumentou significativamente a conversão de FF e a seletividade para GVL, resolvendo o problema do acúmulo de IPL. Estes resultados atestam a importância da sinergia entre acidez de Brønsted da zeólita e a de Lewis dos metais.

Agradecimentos

O presente trabalho foi realizado com apoio da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brasil. Processos 2022/10615-1 e 2024/01433-2.

Referências

- 1. Liu Z. Static synthesis of high-quality MCM-22 zeolite with high SiO2/Al2O3 ratio. Chinese Sci Bull. 2004;49(6):556.
- Li X, Yuan X, Xia G, Liang J, Liu C, Wang Z, et al. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis. dezembro de 2020; 392:175–85.
- 3. Liu B, Chen X, Xu Y, Qiao C, Lu Z, Tian Y. *A combo Zr–zeolite and Zr(OH)4 mixture composition for one–pot production of γ–valerolactone from furfural*. Renewable Energy. agosto de 2024; 229:120751.