

Efeito do método de preparação de catalisadores NiO/MgO-Al₂O₃ sobre a conversão do biogás via reforma seca do metano

Anderson S. Francelino^{1*} Alessandra F. Lucrédio¹ Victor L. Dejani¹ Elisabete M. Assaf¹

¹Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil *e-mail: andersonusp@usp.br

Resumo/Abstract

RESUMO - O biogás, oriundo da digestão anaeróbia de matéria orgânica, possui elevado potencial como fonte renovável de carbono para produção de combustíveis limpos. Nesse contexto, a reforma seca do metano (RSM) destaca-se como uma rota viável para a conversão do biogás em gás de síntese. Entretanto, a RSM ainda é considerada uma tecnologia imatura do ponto de vista industrial, principalmente devido às dificuldades em desenvolver catalisadores de baixo custo e resistentes à desativação por deposição de coque e sinterização. Diante disso, o catalisador NiO/MgO-Al₂O₃ foi preparado por mistura física, impregnação úmida, co-precipitação e síntese mecanoquímica, com o objetivo de estudar como o método de preparo influencia em suas propriedades e, consequentemente, em seu desempenho na conversão do biogás via RSM. Observou-se que os catalisadores obtidos por co-precipitação e síntese mecanoquímica apresentaram melhor desempenho, o que pode ser associado à maior formação de fases espinélio (NiAl₂O₄ e MgAl₂O₄), que promovem uma interação metal–suporte mais forte em função da distribuição mais homogênea do níquel, levando a uma maior dispersão da fase ativa.

Palavras-chave: Catálise Heterogênea, reforma seca do metano, biogás.

ABSTRACT - Biogas, derived from the anaerobic digestion of organic matter, has high potential as a renewable carbon source for the production of clean fuels. In this context, dry reforming of methane (DRM) stands out as a viable route for converting biogas into synthesis gas. However, DRM is still considered an immature technology from an industrial perspective, mainly due to the challenges in developing low-cost catalysts with high resistance to deactivation by coke deposition and sintering. In this regard, the NiO/MgO-Al₂O₃ catalyst was prepared via physical mixing, wet impregnation, co-precipitation, and mechanochemical synthesis, aiming to investigate how the preparation method influences its properties and, consequently, its performance in biogas conversion via DRM. Catalysts prepared by co-precipitation and mechanochemical synthesis showed superior performance, which may be attributed to the increased formation of spinel phases (NiAl₂O₄ and MgAl₂O₄) that enhance the metal–support interaction through a more homogeneous distribution of nickel, thereby resulting in higher dispersion of the active phase.

Keywords: Heterogeneous catalysis, dry reforming of methane, biogas.

Introdução

O biogás, produto da digestão anaeróbia de matéria orgânica complexa promovida por microrganismos, tem grande potencial como fonte renovável de carbono para produção de combustíveis limpos. Assim, a reforma seca do metano (RSM: $CH_4 + CO_2 \rightarrow 2CO + 2H_2$) destaca-se como uma rota viável para a conversão do biogás em gás de síntese (1). Contudo, a RSM ainda é considerada uma tecnologia imatura no âmbito industrial, principalmente devido às dificuldades em desenvolver catalisadores de baixo custo e resistentes à desativação por deposição de coque e sinterização. Dentre os materiais estudados, o níquel (Ni) tem sido explorado devido ao seu baixo custo e atividade comparável à de metais nobres, apesar de ser suscetível à desativação (1). Sob essa perspectiva, o método de síntese tem mostrado exercer grande influência sobre as propriedades físico-químicas dos catalisadores, configurando-se como uma estratégia promissora para aprimorar seu desempenho na RSM (1). Assim, o presente

trabalho busca investigar a influência do método de preparação de catalisadores NiO/MgO-Al₂O₃ sobre a conversão do biogás via RSM.

Experimental

Os catalisadores foram preparados por mistura física (MIS), impregnação úmida (IMP), co-precipitação (COP) e síntese mecanoquímica (MEC), de forma que o material obtido ao final fosse composto por 10% de NiO e 10% de MgO em massa de catalisador. Na mistura física, os óxidos (preparados previamente por co-precipitação dos nitratos com NaOH) foram misturados por maceração. Na impregnação úmida, os nitratos de Ni e Mg, dissolvidos em água deionizada, foram homogeneizados com γ -Al₂O₃ por 2 h, e o solvente removido a vácuo em rotaevaporador. Na co-precipitação, quantidades adequadas dos nitratos de Ni, Mg e Al em solução aquosa foram co-precipitadas com uma solução de NaOH 1,2 M em pH 9,5. A suspensão foi agitada por 1 h e o sólido obtido filtrado à vácuo e lavado

com água deionizada até a neutralidade. A síntese mecanoquímica foi realizada em um moinho de esferas RETSCH MM 400 por 15 min a 30 Hz, pela a adição direta dos nitratos de Ni e Mg e γ-Al₂O₃, com razão massa-esfera igual a 20. Todos os materiais, exceto o preparado por mistura física, foram secos a 85 °C por 20 h e calcinados a 600 °C por 3 h.

Os catalisadores foram caracterizados por difração de raios X (DRX), espectroscopia de raios X por energia dispersiva (EDX) e redução a temperatura programada com hidrogênio (RTP-H₂). Os testes catalíticos foram realizados em reator de leito fixo a 700 °C, com 100 mg de catalisador e alimentação CH₄:CO₂:N₂ (4:4:1) a fluxo total de 90 mL min⁻¹, após redução prévia a 750 °C por 1 h. A análise dos gases foi feita em cromatógrafo a gás com duas colunas (Propak K e peneira molecular) e detector FID.

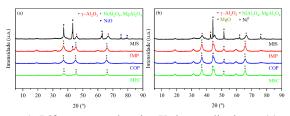
Resultados e Discussão

Conforme a Tabela 1, as análises de EDX indicaram teores de NiO e MgO próximos aos valores nominais em todas as amostras, confirmando a eficácia das sínteses e a incorporação dos componentes desejados.

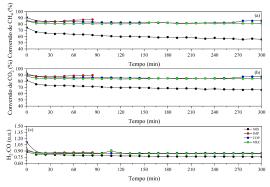
Tabela 1. Composição química, grau de redução e tamanho dos cristalitos de Ni nos catalisadores obtidos por DRX.

Material	Teor em massa (%)		Grau de redução	Tamanho dos cristalitos de Ni ⁰
	NiO	MgO	(70)	(nm)**
MIS	9,9	8,5	95,0	35,5
IMP	10,6	9,7	68,0	10,0
COP	10,0	8,8	59,0	10,1
MEC	11,8	11,4	58,0	8,6

*Determinados por RTP-H₂; ** Estimado pela Eq. de Scherrer considerando o pico em 51,5°.


A Figura 1a, que indica os difratogramas dos catalisadores calcinados, demonstrou que MIS apresentou clara separação de fases, com picos distintos de NiO (PDF 47-1049) e γ-Al₂O₃ (PDF 50-741). Por outro lado, IMP, COP e MEC apresentaram picos compatíveis com as fases espinélio NiAl₂O₄ (PDF 10-339) e MgAl₂O₄ (25-1152), sugerindo a formação dessas estruturas durante a síntese. Já a Figura 1b, que apresenta os difratogramas dos catalisadores reduzidos *ex-situ*, confirmou a formação de níquel metálico (Niº). Além disso, observa-se que IMP, COP e MEC apresentaram menor tamanho de cristalito em comparação a MIS, o que pode ser associado à formação dos aluminatos, que intensificam a interação metal-suporte, e propiciam a produção de cristalitos menores (2).

As análises de RTP-H₂ indicaram que MIS apresentou picos de redução entre 350 °C e 500 °C, com alto grau de redução, sugerindo baixa interação metal-suporte. Já IMP, COP e MEC, com picos simétricos em torno de 750 °C e baixo grau de redução (Tabela 1), sugerem a presença de fases espinélio (3), compatíveis com os dados de DRX.


Conforme indicado na Figura 2, os catalisadores COP e MEC apresentaram o melhor desempenho, com alta

conversão e estabilidade ao longo de toda a reação. Contudo, o catalisador MIS apresentou menor conversão inicial e desativação progressiva. Apesar das altas conversões de $\mathrm{CH_4}$ e $\mathrm{CO_2}$, a reação com o catalisador IMP foi interrompida após 80 min devido ao aumento de pressão no reator, sugerindo a formação de carbono filamentoso (4). Todos os catalisadores exibiram razão $\mathrm{H_2:CO}$ menor que 1, atribuída ao maior consumo de $\mathrm{CO_2}$ pela reação reversa de deslocamento gás-água ($\mathrm{CO_2} + \mathrm{H_2} \rightleftharpoons \mathrm{CO} + 2\mathrm{H_2O}$).

Figura 1. Difratogramas de raios X dos catalisadores: (a) após calcinação e (b) após redução. Fases cristalinas identificadas com base no banco de dados ICDD.

Figura 2. Perfis de conversão de (a) $\mathrm{CH_4}$, (b) $\mathrm{CO_2}$ e (c) razão $\mathrm{H_2}$:CO.

Conclusões

Os catalisadores MEC e COP apresentaram melhor desempenho, atribuído à maior formação de fases do tipo espinélio, que intensificam a interação metal—suporte, geram menores partículas de Ni e favorecem a estabilidade e a resistência à desativação.

Agradecimentos

Ao CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico (Processo 127542/2024-8).

Referências

- 1. Y. Gao, J. Jiang, Y. Meng, F. Yan, A. Aihemaiti, *Energy Convers. Manage.* **2018**, *171*, 133–155.
- 2. Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, *Chem. Mater.* **2000**, *12*(2), 331–335.
- 3. J. Zieliński, J. Catal. **1982**, 76(1), 157–163.
- 4. P. Forzatti, L. Lietti, *Catal. Today* **1999**, *52*(2–3), 165–181.