

Propriedades Superficiais de SnO₂ e sua Correlação com a Seletividade na Fotorredução de CO₂

Juliana Arriel Torres1*, André E. Nogueira2, Gelson T. S. T. da Silva3, Francisco Guilherme E. Nogueira3, Caue Ribeiro1

- ¹ Embrapa Instrumentação, São Carlos/SP, Brasil. *juliana.torres@embrapa.br
- ² Divisão de Ciências Fundamentais (IEF), Instituto Tecnológico de Aeronáutica- ITA, São José dos Campos, Brasil
- ³Universidade Federal de São Carlos, São Carlos/SP, Brasil.

Resumo/Abstract

RESUMO - Diversos fotocatalisadores têm sido estudados para reações de redução, incluindo semicondutores à base de SnO₂. Embora sua estrutura de bandas seja desfavorável à redução de CO₂, estratégias de modificação superficial impactaram sua atividade e seletividade. Este trabalho investigou o efeito do tratamento térmico e da deposição de nanopartículas de Au na fotorredução de CO₂ em fase gasosa. Sob radiação UV, observou-se queda na produção de CH₄ (59,81% para SnO₂_150 °C e 51,45% para SnO₂/Au_cop), relacionada à menor disponibilidade de grupos hidroxilas, importantes para a adsorção de CO₂. Sob radiação visível, a ressonância plasmônica do Au resultou na formação de CH₄ (0,33 μmol·g⁻¹ para SnO₂/Au_cop e 0,29 μmol·g⁻¹ para SnO₂/Au_150 °C), com produção de pequenas quantidades de CO. Apesar da estrutura eletrônica não ser ideal para a redução de CO₂, os resultados mostram que as propriedades de superfície do SnO₂ são determinantes para sua atividade fotocatalítica.

Palavras-chave: Fotossíntese artificial, Metais nobres, Características de superfície, Seletividade, Ressonância plasmônica.

ABSTRACT - Several photocatalysts have been studied for reduction reactions, including tin oxide (SnO₂)-based semiconductors. Although its band structure is unfavorable for CO₂ reduction, surface modification strategies have significantly affected its catalytic activity and selectivity. This study investigated the effect of heat treatment and gold nanoparticle deposition on the gas-phase CO₂ photoreduction using SnO₂. Under UV irradiation, a decrease in CH₄ production was observed (59.81% for SnO₂_150 °C and 51.45% for SnO₂/Au_cop), associated with a lower availability of hydroxyl groups, which are essential for CO₂ adsorption. Under visible light, the plasmonic resonance of Au led to CH₄ formation (0.33 µmol·g⁻¹ for SnO₂/Au_cop and 0.29 µmol·g⁻¹ for SnO₂/Au_150 °C), along with small amounts of CO. Although the electronic band structure of SnO₂ is not ideal for CO₂ reduction, the results demonstrate that its surface properties are crucial for its photocatalytic performance.

Keywords: Artificial photosynthesis, Noble metals, Surface features, Selectivity, Plasmonic resonance.

Introdução

A emissão excessiva de CO₂ é um dos principais fatores das mudanças climáticas globais. Estratégias sustentáveis para sua conversão em produtos de valor, como combustíveis, têm recebido destaque, especialmente via fotorredução utilizando semicondutores ativados por radiação (1). O SnO₂ se destaca por sua estabilidade, baixa toxicidade e boa mobilidade eletrônica, embora sua estrutura de bandas não favoreça a redução de CO₂ (2). No entanto, modificações superficiais, como a presença de grupos hidroxilas e a incorporação de metais nobres, podem melhorar sua atividade fotocatalítica (3). Este trabalho investiga o efeito do tratamento térmico e da deposição de nanopartículas de ouro (Au) na atividade e seletividade do SnO₂ durante a fotorredução de CO₂ em fase gasosa sob radiação UV e visível.

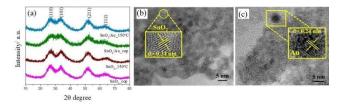
Experimental

Preparo dos catalisadores

Nanopartículas de SnO_2 foram obtidas por coprecipitação em meio etanólico, utilizando $SnCl_2\cdot 2H_2O$ e água destilada, com agitação por 24 h. O material foi lavado, seco a 50 °C e parte calcinada a 150 °C por 3 h. A modificação com ouro foi realizada pela adição de HAuCl4 (1% m/m), seguida de redução com NaBH4. As amostras resultantes foram lavadas, liofilizadas e nomeadas SnO_2/Au_cop e SnO_2/Au_150 °C.

Caracterização

As amostras foram caracterizadas por DRX, espectroscopia Raman, XPS, fluorescência de raios X, DRS, MEV e MET de alta resolução. O teor de Au foi determinado por XRF.



Reação de fotorredução de CO2

A fotorredução foi realizada com 10 mg de catalisador depositados sobre substrato de vidro, em sistema gás-sólido, sob radiação UV (18 W) por 6 h a 15 °C e pressão ambiente. Os produtos gasosos foram analisados por cromatografia gasosa.

Resultados e Discussão

A difração de raios X confirmou que todas as amostras apresentam a fase tetragonal de cassiterita (SnO₂). Os tamanhos médios de cristalito variaram entre 1,50 nm (SnO₂_cop) e 1,73 nm (SnO₂_150 °C). Imagens de HRTEM corroboraram esses resultados, revelando aglomerados quase esféricos de SnO₂ com tamanhos em torno de 5 nm e espaçamento de rede de 0,34 nm, característico do plano (110). As amostras modificadas com Au apresentaram nanopartículas esféricas (~5 nm) bem distribuídas sobre a superfície do SnO₂, com espaçamento de 0,24 nm correspondente ao plano (111) do ouro, confirmando a presença do metal e sua boa dispersão (Figura 1).

Figura 1. Padrões de difração de raios X (a) e imagens de HRTEM das amostras SnO₂_cop (b) e SnO₂/Au_cop (c).

A análise de XPS (Figura 2) confirmou a presença de Sn, O e C em todas as amostras, sem impurezas detectadas. Na amostra SnO₂/Au_150 °C, observou-se um pico adicional correspondente ao ouro, evidenciando a incorporação bemsucedida do metal. Embora o pico de Au seja discreto, sua presença indica a formação de nanopartículas metálicas dispersas, consistentes com as demais análises estruturais.

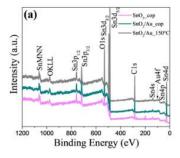


Figura 2. Espectros de varredura de XPS de todas as amostras.

Nos testes de fotorredução de CO₂ em fase gasosa (Figura 3), foi observada uma forte influência das modificações

superficiais do SnO₂ sobre a atividade catalítica. Sob radiação UV, as amostras calcinadas apresentaram queda significativa na produção de CH₄: 59,81% para SnO₂_150 °C e 51,45% para SnO₂/Au_cop, em comparação ao SnO₂_cop. Esse comportamento foi atribuído à menor concentração de grupos hidroxilas superficiais, essenciais para a adsorção de CO₂.

Sob radiação visível, os materiais contendo Au apresentaram atividade fotocatalítica devido à ressonância plasmônica, com produção de metano de 0,33 μmol·g⁻¹ para SnO₂/Au_cop e 0,29 μmol·g⁻¹ para SnO₂/Au_150 °C, além de pequenas quantidades de CO. Esses resultados evidenciam que, apesar das limitações da estrutura de bandas do SnO₂, suas propriedades de superfície e a presença de Au influenciam diretamente a eficiência e seletividade na conversão de CO₂.

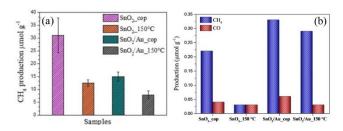


Figura 3. Produção de CH₄ após fotorredução de CO₂ em fase gasosa sob radiação UV (a) e visível (b).

Conclusões

O SnO₂ coprecipitado mostrou alta seletividade para CH₄ na fotorredução de CO₂, destacando o papel crucial dos grupos hidroxilas superficiais. O tratamento térmico e a adição de Au reduziram a atividade sob UV. Sob luz visível, a ressonância plasmônica do Au favoreceu a conversão, mas o SnO₂ seguiu como principal fotocatalisador. A atividade depende fortemente das características superficiais do material.

Agradecimentos

Os autores agradecem o apoio financeiro do CNPq (processos nº 406925/2022-4, 440117/2022-4, 407878/2022-0) e da FAPESP (processos nº 2017/11986-5, 2020/12210-3, 2023/01549-8). FINEP (processo nº 01.22.0274.00, 01.22.0080.00 Ref. 1219/21, 01.24.0554.00); CAPES (001).

Referências

- 1. E. Masood; J. Tollefson, *Nature* **2021**, *599*, 355–356.
- G.T.S.T. da Silva; O.F. Lopes; E.H. Dias; J.A. Torres;
 A.E. Nogueira; L.A. Faustino; F.S. Prado; A.O.T.
 Patrocínio; C. Ribeiro, *Quim. Nova* 2021, 44, 963–981.
- 3. N. Chen; B. Liu; P. Zhang; C. Wang; Y. Du; W. Chang; W. Hong, Inorg. *Chem. Commun.* **2021**, *132*, 108848.