

CO₂ hydrogenation to olefins over alkali metal-doped FeZn catalysts

Victória Gonçalves F. Pereira¹, Carla Ramos Moreira¹, Claudete Abreu da Silva Neta¹, Fabio Souza Toniolo^{1*}.

¹ Universidade Federal do Rio de Janeiro - NUCAT/COPPE/UFRJ, Brasil. *toniolo@peq.coppe.ufrj.br

Resumo/Abstract

RESUMO – FeZn, Na/FeZn e K/FeZn foram preparadas por coprecipitação seguida de impregnação ao ponto úmido para serem avaliados na hidrogenação de CO₂ a olefinas. A adição de Na e K influenciou significativamente as propriedades físico-químicas e catalíticas do FeZn. Os resultados mostram o papel essencial dos metais alcalinos na formação de carbeto de ferro e na produção de olefinas, com K/FeZn apresentando o melhor desempenho em termos de atividade catalítica e rendimento de olefinas. *Palavras-chave: hidrogenação do CO₂, olefinas, catalisadores de Fe, promotores*.

ABSTRACT – FeZn, Na/FeZn, and K/FeZn were prepared by coprecipitation followed by incipient wetness impregnation to be investigated in CO₂ hydrogenation to olefins. The addition of Na and K significantly influences the physicochemical and catalytic properties of FeZn. The results show the essential role of the alkali metals in the iron carbide formation and in the olefins production, with K/FeZn showing the best overall performance in terms of catalytic activity and olefins yield. *Keywords: CO₂ hydrogenation, olefins, Fe-based catalysts; promoters.*

Introduction

Among the various CO₂ upgrading strategies, catalytic hydrogenation of CO₂ to olefins is an attractive approach (1). The hydrogenation of CO₂ to olefins mainly occurs via the CO-mediated route, combining the reverse water-gas shift reaction (RWGS) to convert CO₂ into CO, followed by CO hydrogenation via Fischer-Tropsch Synthesis (RWGS-FTO) using Fe-based catalysts (2).

Iron-based catalysts are widely used because they efficiently catalyze both RWGS and FTS reactions. Alkali metals are usually added as promoters to increase the catalyst's basicity, improving CO_2 adsorption, and more importantly, they inhibit H_2 activation, suppressing the excessive hydrogenation of olefins, minimizing the formation of methane and other paraffins (2,3).

Transitions metals are also investigated as promoters of iron-based catalysts. Yang *et al.* (4) studied the performance of Fe-Na, FeZn-Na, FeCu-Na, and FeMn-Na catalysts in CO₂ conversion into olefins. FeZn-Na showed the highest activity, stability, and olefin yield. Characterizations revealed that Zn improved CO₂ adsorption, facilitated iron reduction and iron carbide formation, and prevented sintering.

In this sense, the aim of this work is to investigate the catalytic performance of FeZn, Na/FeZn, and K/FeZn in the CO₂ hydrogenation to olefins, elucidating the influence of the alkali metals.

Experimental

Catalysts preparation

The FeZn catalyst was synthesized by coprecipitation. NaOH solution (1.5 mol L⁻¹) was added dropwise to a

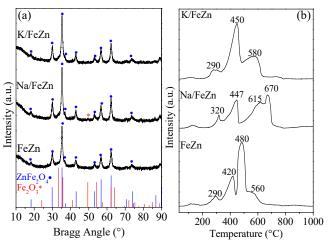
150 mL aqueous solution containing 0.12 mol of Fe(NO₃)₃·9H₂O and 0.04 mol of Zn(NO₃)₂·6H₂O under vigorous stirring at 60 °C, until pH 10. The suspension was aged for 1 h, washed, dried at 100 °C overnight, and calcined at 400 °C for 4 h (5 °C/min). After that, 2 wt.% of Na or K was added by incipient wetness impregnation of an aqueous solution of NaNO₃ and KNO₃, respectively, dried and calcined following the same procedure. The catalysts were labeled FeZn, Na/FeZn, and K/FeZn.

Catalysts characterization

X-ray diffraction (XRD) patterns were obtained using a Bruker D8 Advance diffractometer equipped with a CuK α radiation source (1.5418 Å), recorded in an angular range of 10–90°, at a scanning rate of 1.2°/min and increments of 0.02°. The surface area of the samples was determined by N₂ physisorption at -196 °C in the ASAP 2020 Micromeritics instrument. Temperature programmed reduction (H₂-TPR) analyses were conducted using a multipurpose unit coupled to a Pfeiffer QME 200 mass spectrometer. 100 mg of the samples were pretreated under He flow at 200 °C for 1 h, cooled down, and then reduced under H₂ flow (50 mL.min⁻¹) up to 1000 °C. The reduction profile was monitored via the m/z = 18 (H₂O) signal.

Catalytic evaluation

Catalytic tests were performed in a fixed bed reactor at 320 °C, 3 MPa, H₂/CO₂ molar ratio equal to 3, and GHSV 4000 mL.g_{cat}⁻¹.h⁻¹. The catalysts were pretreated *in situ* at 350 °C for 8h under pure H₂ flow (50 mL.min⁻¹). The effluent gases were analyzed by a GC-2030 Shimadzu gas chromatograph, equipped with 1 Carboxen 1010 plot column, 1 CP-SIL 5 CB column, 1 TCD, and 1 FID detector.



Results and Discussion

Catalysts characterization

FeZn sample presented 86 m².g⁻¹ of surface area, while Na/FeZn 66 m².g⁻¹, and K/FeZn 79 m².g⁻¹. The decrease in surface area may be due to pores filling during Na and K impregnation. The diffractogram of FeZn (Fig.1-a) showed the predominant formation of ZnFe₂O₄ crystalline phase (PDF 33-0664). After the addition of Na and K, no diffraction peaks relative to these species were identified, possibly due to the formation of small crystallites undetectable by the XRD technique.

Fig.1-b presents the H₂-TPR profiles of the samples. FeZn exhibited sequential reduction peaks corresponding to the stepwise reduction of ZnFe₂O₄ to Fe₃O₄, Fe₃O₄ to FeO, and FeO to metallic Fe (4). The addition of K decreased the middle reduction peak (450 °C) and slightly shifted the final reduction peak to higher temperature (580 °C), while Na/FeZn exhibited two distinct high-temperature peaks (615 and 670 °C), indicating a stronger inhibition of iron reduction by Na. The XRD after reduction (Fig.2-a) confirmed that the addition of Na hindered iron oxide reduction, while K favored iron complete reduction to Fe⁰.

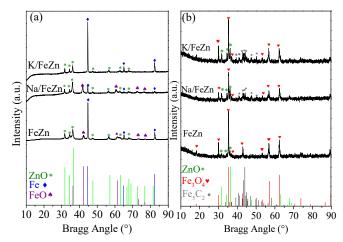

Figure 1. Characterization of the calcined catalysts: (a) XRD patterns and (b) H₂-TPR profiles.

Table 1 summarizes the results of the catalytic tests. FeZn catalyst exhibited a CO₂ conversion of 48.7%, which decreased to 39.8% upon Na addition but remained high (47.0%) after K addition. The incorporation of both Na and K led to a decrease in methane production and a notable increase in the olefin/paraffin ratio. Furthermore, as shown in Fig. 2-b, the presence of alkali metals promoted the formation of iron carbide (Fe₂Cs; PDF 36-1248), considered as the active phase for olefin production (2). K/FeZn achieved a slightly higher olefin yield, indicating improved catalytic performance.

Table 1. Catalytic performance of FeZn catalysts.

Sample	CO ₂ Conv	CO Sel	Hydrocarbon distribution (molar%)					O/P	Olefins Yield
	(%)	(%)	CH ₄	C_{2-4}^{0}	$C_{2-4}^{=}$	C_{5+}	$C_{5+}^{=}$		(%)
FeZn	48.7	4.1	31.9	32.3	15.7	12.7	7.4	0.5	11
Na/FeZn	39.8	6.8	16.1	5.6	41.4	10.1	26.7	4.3	25
K/FeZn	47.0	4.9	18.0	6.8	36.2	10.3	28.6	3.8	29

Figure 2. XRD patterns of the catalysts after (a) reduction, and (b) reaction for 24 h.

Acknowledgments

The authors thank LMDRX/IQ/UERJ for the XRD analysis.

Conclusions

The results showed the essential role of the alkali metals incorporation to increase olefins selectivity and to the formation of the active phase iron carbide. K/FeZn showed superior catalytic performance than Na/FeZn, which may be associated with the higher surface area and iron reducibility.

References

- 1. T. Numpilai; C. Cheng; J. Limtrakul; T. Witoon; *Process Safety and Environmental Protection.* **2021**, *151*, 401–427.
- H. Yang; C. Zhang; P. Gao; H. Wang; X. Li; L. Zhong;
 W. Wei; Y. Sun; Catal. Sci. Technol. 2017, 7, 4580.
- 3. Z. You; W. Deng; Q. Zhang; Y. Wang; *Chinese Journal of Catalysis*. **2013**, *34*, 956–963.
- 4. H. Yang; Y. Dang; X. Cui; X. Bu; J. Li; S. Li; Y. Sun; P. Gao; *Applied Catalysis B: Environmental.* **2023**, *321*, 1–16.