

Impact of CeO₂ shell architecture on the catalytic behavior of Ni/SiO₂ catalyst for hydrogen production via ethanol steam reforming

Andrelaine de Souza Bernardes^{1,2*}, Jõao Monnerat Araujo Ribeiro de Almeida^{1,2}, Pedro Nothaft Romano^{1,3}.

¹LIPCAT (Laboratório de Intensificação de Processos e Catálise), UFRJ, RJ, Brazil. ¹

²EPQB (Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos), EQ, RJ, Brazil.²

³PENt (Programa de Engenharia de Nanotecnologia), COPPE, UFRJ, RJ, Brazil.³

RESUMO - Catalisadores Ni/SiO₂@CeO₂ com estrutura *hollow core—shell* foram sintetizados com diferentes espessuras de céria, com o objetivo de investigar a influência da arquitetura da casca de CeO₂ durante a reforma a vapor do etanol (ESR). Os materiais foram obtidos com hexametilenotetramina (HTMA), o que possibilitou o recobrimento homogêneo do catalisador Ni/SiO₂ sintetizado anteriormente. Quatro amostras foram preparadas com variações da concentração dos precursores e caracterizadas por MEV, MET, EDS, DRX e Fisissorção. A variação sistemática da espessura da camada permitirá uma avaliação abrangente das relações entre estrutura e atividade na reforma a vapor do etanol (ESR), destacando o papel fundamental do controle morfológico na otimização da produção de hidrogênio e da estabilidade catalítica.

ABSTRACT - Hollow core–shell Ni/SiO₂@CeO₂ catalysts were synthesized with varying CeO₂ shell thicknesses to investigate the influence of shell architecture on catalytic performance during ethanol steam reforming (ESR). The materials were synthesized using hexamethylenetetramine (HTMA), enabling the formation of uniform nanometric CeO₂ coatings around the Ni/SiO₂ core. Four samples with controlled shell thicknesses were obtained by adjusting synthesis. Characterization techniques including SEM, TEM, XRD, and Physisorption confirmed the formation of CeO₂ shells composed of nanoparticles, with average thicknesses ranging from 7 to 60 nm. The systematic variation of shell thickness allowed for a comprehensive evaluation of structure–activity relationships in ESR, highlighting the critical role of morphological control in optimizing hydrogen production and catalyst stability.

Introduction

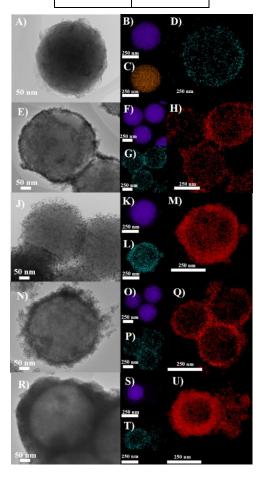
The increasing global demand for sustainable energy has driven the development of efficient catalytic systems for hydrogen production. Among them, ethanol steam reforming (ESR) emerges as a promising route due to ethanol's high hydrogen content, ease of storage, and availability from biomass sources [1]. Nickel-based catalysts are employed in ESR due to their cost-effectiveness and high activity. However, a major limitation of this process is the severe coke formation, which leads to catalyst deactivation and reduced operational lifetime [2].

To mitigate this issue, the use of cerium oxide (CeO₂) r coating material has gained attention due to its high oxygen mobility and redox capacity, which facilitate the oxidation of surface carbon species and promote catalyst regeneration [3].

In this context, hollow CeO₂ shells with controlled thickness were synthesized for influenci studies in nikel catalysts.

Experimental

Silica was synthesized via the Stöber method, using tetraethyl orthosilicate (TEOS, ≥98%, Sigma-Aldrich) as the silica precursor. In a typical synthesis, TEOS and an aqueous ammonia solution (25-28%, Sigma-Aldrich)—a corrosive and volatile compound requiring proper ventilation and the use of personal protective equipment (PPE)—were mixed and stirred at room temperature for 24 hours to allow for particle nucleation and growth. Subsequently, nickel(II) sulfate hexahydrate (NiSO₄·6H₂O, ≥98%, Sigma-Aldrich). The temperature was then increased to 80 °C to promote ammonia evaporation, which led to a pH-induced precipitation of nickel phyllosilicates on the silica surface. The process was monitored until the pH naturally decreased to 7. The resulting solid was separated by centrifugation, washed with deionized water and ethanol, and then dried at 80 °C overnight.


A portion of the dried Ni/SiO₂ material was subjected to ceria coating. The powder was dispersed in an ethanolic

solution containing cerium (III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O, ≥99%, Sigma-Aldrich) and hexamethylenetetramine (HMTA, ≥99%, Sigma-Aldrich) and stirred at 80 °C for 8 hours. This procedure yielded the first CeO₂ layer. After centrifugation and drying, part of the produced catalyst was subjected to additional identical coating steps three times to obtain materials with different layers. All synthesized catalysts were calcined in air at 500 °C for 7 hours, with a heating rate of 5 °C·min⁻¹. In total, five catalysts were obtained, including four core–shell Ni/SiO₂@CeO₂ materials with increasing ceria shell thicknesses as show in table 1.

Table 1. Synthesized catalysts.

Name	Number of
Inallie	shell layers
	Shell layers
Ni/SiO2	0
111111111111111111111111111111111111111	V
1L	1
	•
2L	2
	_
3L	3
	· ·
4L	4
	•

Figure 1. TEM and EDS analisys of A), B), C) and D) Ni/SiO₂; E), F), G) and H) 1L; J), K), L) and M) 2L; N), O), P), and Q) 3L; R), S), T) and U) 4l

Results e Discusion

The results from SEM, TEM, XRD, and BET analyses confirmed the successful formation of CeO₂ layers composed of nanoparticles, with average shell thicknesses varying between 7 and 60 nm.

Conclusions

TEM confirms the CeO₂ shell thickness was successfully controlled, resulting in a range from 7 to 60 nm. Physisorption results indicated an increase in surface area, due the formation of CeO₂ nanoparticles on the catalyst surface. Future work will includ detail studies on catalytic conversion and selectivity, as well as morphological and compositional analyses to further elucidate the role of shell thickness in catalytic performance and stability.

Thanks

Special thanks to Petrogal and Galp for their valuable support and collaboration throughout this research.

References

- GUERRERO, L.; CASTILLA, S.; COBO, M. ADVANCES IN ETHANOL REFORMING FOR THE PRODUCTION OF HYDROGEN. Química Nova, 2014.
- WANG, T. et al. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming. Nanoscale, v. 8, n. 19, p. 10177–10187, 2016.
- DAS, S. et al. Silica—Ceria sandwiched Ni core—shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Applied Catalysis B: Environmental, v. 230, p. 220–236, ago. 2018.