

Otimização de eletrodos de difusão gasosa baseados em Vulcan XC72 para eletrogeração de H_2O_2 e aplicações em eletro-Fenton

João Paulo C. Moura^{1*}; Mauro C. Santos¹

¹ Centre of Natural and Human Sciences, Federal University of ABC. Santo André, SP, Brazil e-mail: jpcmoura96@gmail.com

Resumo/Abstract

RESUMO - Este estudo avaliou diferentes configurações de Eletrodos de Difusão Gasosa (EDGs) para a eletrogeração de H₂O₂ e aplicação no processo eletro-Fenton (EF) no tratamento de águas residuais contendo corantes orgânicos. Três configurações de eletrodos foram testadas: EDG-1 (catalisador entre placas), EDG-2 (catalisador depositado em tecido de carbono) e EDG-3 (combinação entre EDG-1 e EDG-2). Os resultados mostraram que o EDG-3 alcançou a maior produção absoluta de H₂O₂ (~300 mg L⁻¹ a 40 mA cm⁻²), devido a modificações superficiais que melhoraram sua atividade catalítica. No entanto, quando normalizada pela carga de catalisador, o EDG-2 destacou-se com uma eficiência excepcional, superando significativamente os outros eletrodos. Essa alta eficiência foi atribuída à melhor dispersão e acessibilidade dos sítios ativos no EDG-2. Além disso, o EDG-2 demonstrou excelente desempenho na degradação de corantes (*Reactive Black* e Azul de Metileno) via EF, decompondo completamente os poluentes em curtos períodos de eletrólise.

Palavras-chave: Eletro Fenton, eletrodo de difusão gasosa, H_2O_2

ABSTRACT: This study evaluated different configurations of Gas Diffusion Electrodes (GDEs) for the electrogeneration of H_2O_2 and their application in the electro-Fenton (EF) process for the treatment of wastewater containing organic dyes. Three electrode configurations were tested: GDE-1 (catalyst between plates), GDE-2 (catalyst deposited on carbon cloth), and GDE-3 (a combination of GDE-1 and GDE-2). The results showed that GDE-3 achieved the highest absolute production of H_2O_2 (~300 mg L^{-1} at 40 mA cm⁻²), due to surface modifications that enhanced its catalytic activity. However, when normalized by catalyst loading, GDE-2 stood out with exceptional efficiency, significantly outperforming the other electrodes. This high efficiency was attributed to the better dispersion and accessibility of active sites in GDE-2. Additionally, GDE-2 demonstrated excellent performance in dye degradation (Reactive Black and Methylene Blue) via EF, completely decomposing the pollutants in short electrolysis times.

Keywords: Electro Fenton, gas diffusion electrode, H₂O₂

Introdução

A busca por sistemas eletroquímicos eficientes para a geração de peróxido de hidrogênio (H₂O₂) tem atraído bastante atenção. Isso se deve ao seu papel central nos Processos Oxidativos Avançados (POAs), especialmente no método Eletro-Fenton (EF) para o tratamento de águas residuais (1,2). Eletrodos de difusão gasosa (EDGs) são amplamente usados para esse fim, oferecendo alta disponibilidade de oxigênio na interface do catalisador (3). Nesse contexto, a engenharia de superfície de eletrodos surge como uma estratégia promissora para superar limitações e aumentar a reatividade eletroquímica. Neste estudo, foi feita uma comparação de diferentes configurações de EDGs com o objetivo aprimorar a eletrogeração de H₂O₂ e melhorar o desempenho no tratamento de águas residuais via aplicações do método EF.

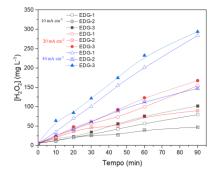
Experimental

Preparo dos eletrodos

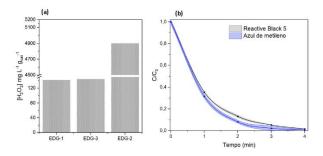
Os EDGs (Eletrodos de Difusão Gasosa) foram compostos por uma mistura catalítica de carbono Vulcan XC-72 com 20% (razão mássica) de PTFE. Para o EDG-1, 2g dessa massa foram prensados a quente entre duas placas de aço

inoxidável (4). Para o EDG-2, foram depositado 10 mg cm² de uma tinta feita de carbono Vulcan XC-72 e 40% de PTFE em um tecido de carbono. Ainda para efeito de comparação foi preparado o EDG-3, no qual uma das placas foi substituída por EDG-2. Todos EDGs possuem 3 cm² de área.

Ensaios de eletrogeração


Os ensaios foram realizados em uma célula de compartimento único, foram utilizados 250 mL de eletrólito 50mM Na₂SO₄ com pH ajustado a 3. Todos os experimentos foram realizados galvanostaticamente com uma placa de 3 cm⁻² de Pt como anodo e os EDGs preparados como catodos. Os EDGs foram insuflados com 0,2 bar de O₂. Para os ensaios de degradação foram estudados dois corantes, reactive black e azul de metileno. Ambos com concentração inicial de 25 mg L⁻¹. Para os experimentos EF foram adicionados 0,5 mM de FeSO₄.

A concentração de peróxido de hidrogênio eletrogerado e a degradação dos corantes foram determinadas por espectrofotômetro UV-Vis.


Resultados e Discussão

A Figura 1 mostra que a eficiência na produção eletroquímica de $\rm H_2O_2$ aumenta com maiores densidades de corrente (10, 20 e 40 mA cm⁻²) para todos os eletrodos testados (EDG-1, EDG-2 e EDG-3). O EDG-3 modificado apresentou o melhor desempenho, atingindo ~300 mg L⁻¹ de $\rm H_2O_2$ a 40 mA cm⁻², indicando que suas alterações superficiais melhoraram a atividade catalítica. EDG-1 teve desempenho intermediário, enquanto EDG-2 se demonstrou o menos eficiente.

Figura 1. Ensaios de eletrogeração de H₂O₂ realizados em diferentes intensidades de corrente e sob diferentes configurações de GDEs.

O EDG-2, composto apenas por tecido de carbono com Vulcan/PTFE depositado, apresentou o menor acúmulo absoluto de peróxido entre as configurações testadas. No entanto, este resultado deve ser analisado com cuidado, pois a carga de catalisador no EDG-2 era significativamente menor em comparação aos outros eletrodos. Quando normalizada pela quantidade de catalisador (como mostrado na Figura 2(a)), o desempenho do EDG-2 se revela notavelmente superior. Esta diferença marcante na atividade catalítica por unidade de massa sugere que a configuração simples do EDG-2, embora contenha menos material ativo, os resultados indicam que a dispersão do catalisador no EDG-2 pode ser particularmente eficaz, com sítios ativos altamente acessíveis e com menor bloqueio por partículas inativas quando comparado às outras configurações.

Figura 2. (a) Acúmulo de H₂O₂ eletrogerado normalizado pela quantidade de catalisador. (b) A eficiência da degradação de RB5

e AM foi avaliada em diferentes sistemas, sob as seguintes condições: concentração inicial do poluente de 25 mg/L, sulfato de sódio a 0,05 M, pH ajustado para 3, concentração inicial de ferro de 0,5 mM e densidade de corrente de 40 mA cm⁻²

O EDG-2 demonstrou excelente desempenho na degradação de corantes orgânicos via processo eletro-Fenton (Fig. 2(b)), decompondo completamente os poluentes em curtos períodos de eletrólise. Essa eficiência superior decorre de sua capacidade de gerar H_2O_2 in situ de forma otimizada. A configuração simplificada do eletrodo, combinando alta atividade catalítica por grama de material e arquitetura favorável, mostrou-se eficaz promovendo na degradação dos poluentes em estudo. Esses resultados destacam o potencial prático do EDG-2 para tratamento de efluentes com poluentes recalcitrantes.

Conclusões

Os resultados evidenciam que a configuração simplificada do EDG-2, com menor carga de catalisador, mas maior eficiência por unidade de massa, foi a mais promissora para aplicações práticas no tratamento de efluentes. Sua arquitetura favoreceu a produção contínua de H_2O_2 e a degradação eficiente de poluentes recalcitrantes. Este estudo destacou a importância da engenharia de superfície de eletrodos para otimizar a relação custo-efetividade em processos eletroquímicos.

Agradecimentos

Gostaria de agradecer o apoio financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processos 2021/05364-7, 2017/10118-0 e 2023/02396-4, da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e do CNPq.

Referências

- 1. Santos MC, Antonin VS, Souza FM, Aveiro LR, Pinheiro VS, Gentil TC, et al. Chemosphere. 2022, 307, 135763
- 2. Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, et al. Chemosphere, 2024, 352, 141456.
- 3. Wang J, Li C, Rauf M, Luo H, Sun X, Jiang Y. Science of The Total Environment. 2021, 759, 143459
- 4. Forti JC, Rocha RS, Lanza MRV, Bertazzoli R. Journal of Electroanalytical Chemistry. 2007, 601(1–2), 63–7.