

Quantificando Sítios Ácidos em Zeólitas de Estrutura MFI: Uma Abordagem Didática por Titulação Volumétrica

Gabriel de F. Lopes^{1*}, Luan Vinicius C. de Oliveira¹, Elisabete M. Assaf¹, Luiz H. Vieira^{1*}

¹Instituto de Química de São Carlos - Universidade de São Paulo (IQSC-USP), São Carlos, Brasil. gabrielfreitaslopes@usp.br, lhvieira@iqsc.usp.br.

Resumo/Abstract

RESUMO - Este trabalho aborda a possibilidade de determinação da acidez da zeólita ZSM-5 de estrutura MFI por meio de titulação volumétrica, visando sua aplicação em práticas de ensino. Uma zeólita protonada (razão Si/Al = 11,5) foi tratada com NaOH 0,01 M para neutralização dos sítios de Brønsted e o excesso de OH em solução foi titulado para quantificação indireta da acidez. Posteriormente, o sólido neutralizado foi caracterizado por TGA, DRX, TPD-NH₃ e fisissorção de N₂. Os resultados mostraram que a zeólita H-ZSM-5 possui acidez de 0,85 mmol.g⁻¹, porém notou-se a presença de sítios ácidos remanescentes no material neutralizado (~12%), assim como a degradação estrutural da zeólita, com redução da área superficial e perda de microporosidade. A metodologia se mostra eficiente para estimar a acidez de forma didática, ainda que de forma destrutiva.

Palavras-chave: Zeólita MFI, acidez, titulação volumétrica, troca iônica, caracterização estrutural.

ABSTRACT - This work explores the possibility of determining the acidity of ZSM-5 zeolite with MFI structure through volumetric titration, aiming at its application in teaching practices. A protonated zeolite (Si/Al ratio = 11.5) was treated with 0.01 M NaOH to neutralize the Brønsted acid sites, and the excess OH in solution was titrated to indirectly quantify the acidity. Subsequently, the neutralized solid was characterized by TGA, XRD, NH₃-TPD, and N₂ physisorption. The results showed that H-ZSM-5 zeolite has an acidity of 0.85 mmol.g⁻¹, but residual acid sites (~12%) were observed in the neutralized material, as well as structural degradation of the zeolite, with a reduction in surface area and loss of microporosity. The methodology proves to be effective for estimating acidity in a didactic manner, although it is destructive. Keywords: MFI zeolite, acidity, volumetric titration, ion exchange, structural characterization.

Introdução

As zeólitas contribuem para o entendimento de propriedades ácidas em sólidos. A presença do alumínio (AlO₄) introduz uma densidade de carga negativa sobre a estrutura, que pode ser compensada por prótons, originando sítios ácidos de Brønsted.(1)

Os métodos comumente utilizados para quantificação da acidez em zeólitas envolvem aparato instrumental complexo, como dessorção em temperaturas programadas e análises espectroscópicas de moléculas sonda.(2)

Uma das possibilidades de simplificar o processo de quantificação da acidez em zeólitas vem das propriedades de troca iônica que esses sólidos apresentam quando suspensos em solução. O próton (H⁺) pode ser introduzido na estrutura por métodos convencionais de protonação com cloreto ou nitrato de amônio, podendo assim ser quantificado por titulação volumétrica.(3)

O trabalho busca quantificar sítios ácidos de Brønsted em zeólitas empregando a titulação volumétrica, a fim de produzir um roteiro experimental aplicado à graduação.

Experimental

Troca iônica com cloreto de amônio

5 g de ZSM-5 (Si/Al = 11,5) foi dispersa em 100 mL de NH₄Cl 1M, sob agitação a 600 rpm por 2 h à temperatura ambiente. A mistura foi centrifugada a 15000 rpm por 15 min e o sobrenadante foi removido. Após a terceira troca o material foi centrifugado e

lavado com água destilada. A zeólita foi seca em estufa a 95 °C por 24 h, macerada, peneirada e calcinada a 550 °C a 2 °C.min $^{-1}$.(4)

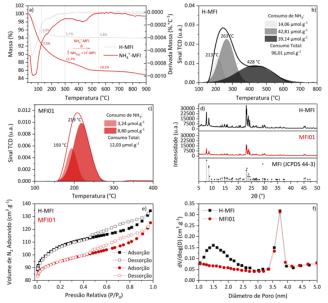
Titulação volumétrica

 $200\,\mathrm{mg}$ de H-ZSM-5 foi disperso em $20\,\mathrm{mL}$ de NaOH (0,01 M - pH 11,8) sob agitação a 600 rpm por 15 min à temperatura ambiente. A mistura foi centrifugada a 15000 rpm por 15 min. O sobrenadante foi transferido para um erlenmeyer e a zeólita foi seca em estufa a 95 °C por 24 h. O sobrenadante foi titulado com HCl (0,01 M) previamente padronizado e 3 gotas de fenolftaleína como indicador. Uma amostra em branco foi conduzida.(5) A acidez foi determinada de acordo com a Equação 1.

$$Acidez (mmol. g^{-1}) = \frac{{}^{M}_{HCl(mmol/L)} \cdot f_c \cdot (V_{b(L)} - V_{t(L)})}{{}^{M}_{Amostra(g)}}$$
(1)

Caracterização

Conduziu-se análise termogravimétrica (TGA), difração de raios x (DRX), dessorção de amônia a temperatura programada (TPD-NH₃) e fisissorção de N₂ na zeólita pré e pós titulação.


Resultados e Discussão

A zeólita protonada apresentou uma acidez de 0,85 mmol.g⁻¹, dentro de resultados já apresentados na literatura.(6)

Nas curvas TGA (1a), H-MFI apresenta perda de massa de 5,8%, associados à remoção de água e NH₄⁺-MFI a perda de massa de 14,1%, está associada a decomposição dos cátions amônio para a formação dos sítios ácidos.(7)

Na análise de TPD-NH₃, H-MFI (1b) exibiu picos em 213 °C, 263 °C e 428 °C, referente aos sítios ácidos fracos, médios e fortes, respectivamente, com consumo de 96,01 μmol.g⁻¹.(8) Após a titulação (1c), observou-se redução do consumo de amônia (12,03 μmol.g⁻¹) e ausência de sítios fortes, confirmam sua neutralização parcial.

Figura 1. Caracterização da acidez e estrutura. (a) TGA; (b, c) TPD-NH₃; (d) DRX; (e) Fisissorção de N₂; (f) Diâmetro de poros.

No DRX (1d), H-MFI exibe picos de difração definidos e intensos na região de 2θ entre 7° e 9° e 22° e 25° , característicos da estrutura MFI, conforme o padrão JCPDS 44-3.(9) Após o tratamento alcalino (MFI01) observa-se redução na intensidade dos picos, indicando a perda parcial da cristalinidade associada à destruição da estrutura MFI. Já nas isotermas de fisisorção de N_2 , H-MFI (1e) apresenta isotermas do tipo I e IV, características de estruturas micro-mesoporosas com histerese do tipo H4.(10) Já a isoterma da MFI01 apresenta aumento do volume adsorvido e histerese mais acentuada.

Na distribuição do diâmetro de poros (1f), H-MFI apresenta picos entre 1 e 2,5 nm, referente a presença de microporos na zeólita, ausente na MFI01 devido a sua destruição após titulação com a solução básica. O pico em 3,8 nm é uma característica da cavitação do adsorvato durante a redução da pressão até 0,45, e não representa a existência de mesoporos no material.(11)

Na Tabela 1, H-MFI, apresenta valores compatíveis com uma zeólita do tipo MFI bem estruturada e microporosa.

Tabela 1. Propriedades texturais das amostras.

Amostra	Área de Superfície (m².g-¹)	Volume de Poros (cm ³ .g ⁻¹)
H-MFI	183,13	0,11
MFI01	139,19	0,09

Após o tratamento com NaOH (MFI01), observa-se uma redução significativa na área superficial e no volume de poros, evidenciando a desestruturação da rede microporosa da zeólita, associada à dissolução do silício da MFI em meio básico.

Conclusões

A redução da área superficial, intensidade dos picos de difração e acidez, evidenciada pelas análises de fisissorção de N_2 , DRX e TPD-NH₃, indica que o tratamento alcalino não apenas neutralizou os sítios ácidos de Brønsted, como também diminuiu significativamente o número total desses sítios, em decorrência da deterioração estrutural, auxiliando na formação de mesoporos.

Embora o uso de NaOH seja eficiente para a neutralização da acidez, ele compromete propriedades texturais da zeólita, mas ainda pode ser considerado como um método destrutivo de determinação de acidez de zeólitas.

Agradecimentos

Agradecemos ao Programa Unificado de Bolsas da USP pelo apoio financeiro e ao CNPq pelos materiais e equipamentos utilizados no Laboratório de Catálise Heterogênea.

Referências

- L. L. Silva; D. Cardoso; C. Sievers; L. Martins, J. Phys. Chem. C. 2020, 4, 2439-2449.
- 2. M. Boronat; A. Corma, ACS Catal. 2019, 9, 1539-1548.
- 3. G.N. Vayssilov; H.A. Aleksandrov; E. Dib; I.M. Costa; N. Nesterenko; S. Mintova, *Microporous Mesoporous Mater.* **2022**, *343*, 112144.
- J. Mokrzycki; M. Fedyna; M. Marzec; R. Panek; J. Szerement; L. Marcińska-Mazur; R. Jarosz; T. Bajda; W. Franus; M. Mierzwa-Hersztek, *J. Water Process Eng.* 2022, 50, 103299.
- O. V. Zikrata; O. V. Larina; D. Y. Balakin; Y. M. Nychiporuk; I. Khalakhan; M. Švegovec; J. Volavšek; P. S. Yaremov; S. O. Soloviev; S. M. Orlyk, *Chem. Cat. Chem.* 2024, 16, e202400068.
- A. Kostyniuka; D. Bajeca; B. Likozara, J. Ind. Eng. Chem. 2021, 96, 130-143.
- A. Al-Mamoori; U. A. Saed; A. A. Saoud; M. F. A. Jabbar;
 A. Jasim; H. S. Majdi; A. Hanif; P. Iacomi. *ACS Omega*. 2025, 10, 20129-20141.
- A. Parra-Marfil; R. Ocampo-Pérez; C. G. Aguilar-Madera;
 F. Carrasco-Marín; A. F. Pérez-Cadenas; A. Bueno-López;
 E. Bailón-García. *Environ. Sci. Pollut. Res.* 2024, 31, 32766-32783.
- 9. X. Xiao; B. Sun; P. Wang; X. Fan; L. Kong; Z. Xie; B. Liu; Z. Zhao, *Microporous Mesoporous Mater.* **2022**, *330*, 111621
- L. L. Silva; B. R. Florindo; G. L. Catuzo; I. W. Zapelini; J. V. S. Cardoso; F. M. T. Luna; C. L. Cavalcante Jr; L. Martins. *Mol. Catal.* 2022, *529*, 112557.
- 11. J. C. Groen; L. A. A. Peffer; J. Perez-Ramırez, *Microporous Mesoporous Mater.* **2003**, *60*, 1-17.