



# Síntese e caracterização de estruturas ZIF-8 de Ni<sup>2+</sup> e Zn<sup>2+</sup> amino modificados

Gabriel Alves Da Silva<sup>1\*</sup>, João Pedro Dias Querino<sup>1</sup>, Luiz Gustavo Possato<sup>1</sup>.

<sup>l</sup>gabriel.alves-silva@unesp.br ;Departamento De Química, UNESP, Faculdade De Ciências, Bauru-SP.

#### Resumo/Abstract

RESUMO - Neste trabalho, foram sintetizadas estruturas ZIF-8 de Ni²+ e Zn²+ e estruturas ZIF-8 de Ni²+ e Zn²+ amino modificados em temperatura ambiente. O composto amino utilizado foi a hexadecilamina. Os padrões de difração de raios X das amostras apresentaram os planos cristalográficos característicos da estrutura ZIF-8 original ((110), (200), (211) e (222)), na qual a amostra S-80/20 obteve picos com intensidades maiores e mais finos em relação às amostras S-12,5% e S-25% que obtiveram picos com intensidades mais baixas e mais alargados. A espectroscopia Raman das amostras apresentou bandas características da estrutura ZIF-8 original. Após as análises de difração de raios X e espectroscopia Raman, é possível concluir que amostras amino modificadas contendo Ni²+ e Zn²+ desejadas foram sintetizadas.

Palavras-chave: ZIF-8, Hexadecilamina, Adsorção de CO<sub>2</sub>, Catalisadores.

ABSTRACT - In this work, ZIF-8 structures of Ni<sup>2+</sup> and Zn<sup>2+</sup> and ZIF-8 structures of Ni<sup>2+</sup> and Zn<sup>2+</sup> amino modified at room temperature were synthesized. The amino compound used was hexadecylamine. The X-ray diffraction patterns of the samples showed the crystallographic planes characteristic of the original ZIF-8 structure (110), (200), (211) and (222)), in which sample S-80/20 obtained peaks with higher intensities and thinner than samples S-12.5% and S-25%, which obtained peaks with lower intensities and broader. The Raman spectroscopy of the samples showed bands characteristic of the original ZIF-8 structure. After the X-ray diffraction and Raman spectroscopy analyses, it can be concluded that amino modified samples containing Ni<sup>2+</sup> and Zn<sup>2+</sup> were synthesized.

Keywords: ZIF-8, Hexadecylamine, CO2 adsorption, catalysts

## Introdução

Nas últimas décadas, há uma preocupação crescente com a acumulação excessiva de dióxido de carbono (CO<sub>2</sub>) na atmosfera e o seu profundo impacto no ambiente global, uma vez que este gás é um dos contribuintes para as alterações climáticas globais. Lidar com a quantidade cada vez maior de CO<sub>2</sub> requer estratégias inovadoras e sustentáveis para mitigar as emissões desse gás (1).

Neste contexto, destacam-se o Zeolitic Imidazolate Frameworks (ZIFs). Esses materiais são conhecidos por suas propriedades características e têm sido intensamente investigados por seu potencial para captura de CO<sub>2</sub>. Dentre os ZIFs, o ZIF-8 tem atraído grande atenção devido à sua excelente estabilidade que permite uma operação de longo prazo e alta capacidade de adsorção de CO<sub>2</sub>. Originalmente, ZIF-8 é uma estrutura sintetizada na presença de Zn<sup>2+</sup> como cátion e ligante 2-metilimidazol (1).

Estudos recentes têm conduzido a aprimoração do ZIF-8 para possuir um ótimo desempenho na aplicação desejada, essa aprimoração vem na utilização de outro metal de transição na estrutura do ZIF-8. Uma substituição parcial de Zn<sup>2+</sup> por Ni<sup>2+</sup> é uma tentativa de associar a capacidade de adsorção de CO<sub>2</sub> da estrutura ZIF-8 com o potencial catalítico do Ni<sup>2+</sup>. A adição do Ni<sup>2+</sup> tem uma melhora na capacidade catalítica do material, porém tem uma diminuição da capacidade de adsorção de CO<sub>2</sub> devido a diminuição da porosidade do material. Essa diminuição da porosidade está relacionada pela tendência do Ni<sup>2+</sup> a formar

geometrias octaédricas, enquanto o Zn<sup>2+,</sup> cátion original da estrutura, formar geometrias tetraédricas (2).

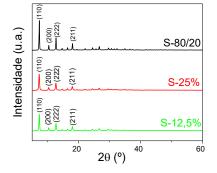
Uma maneira de aumentar a adsorção de CO<sub>2</sub> dessa estrutura é adicionar um composto amino (Hexadecilamina), visto que a extensão da estrutura do ZIF-8 com sítios amino apresenta uma abordagem promissora, atribuído à sua notável capacidade de grupos funcionais amina interagirem quimicamente com moléculas de CO<sub>2</sub>(1). Esta interação química, denominada quimissorção, desempenha um papel fundamental na facilitação da captura e imobilização eficientes de CO<sub>2</sub> de misturas gasosas (1).

### Experimental

Síntese dos ZIFs

As estruturas foram sintetizadas com o uso dos reagentes nitrato de níquel hexahidratado (Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, 97%), Nitrato de zinco hexahidratado (Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, 98%), 2-metilimidazol (C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>, 99%), hexadecilamina (CH<sub>3</sub>(CH<sub>2</sub>)<sub>15</sub>NH<sub>2</sub>., 98%, para as Amostras S-12,5% e S-25%) e metanol (CH<sub>3</sub>OH, 100%). Todos os reagentes são da *Sigma-Aldrich*.

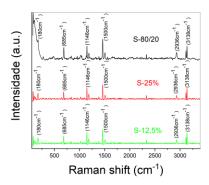
Primeiramente, foram pesados os sais metálicos (80% de Niquel (0,6335g) e 20% de zinco (0,1617g)) em um béquer e em outro béquer foi pesado o 2-metilimidazol e hexadecilamina (para as amostras que contém). Em seguida foram colocados 20 mL de metanol em cada béquer e feito a solubilização. As duas soluções foram misturadas em outro béquer e depois transferido para uma autoclave de aço




com copo interno de teflon e foram mantidas por 24 h à temperatura ambiente. As amostras foram centrifugadas em 3000 rpm por 15 min e lavadas com metanol após o fim da centrifugação (essa etapa foi repetida três vezes em cada amostra). As amostras foram levadas a uma estufa a 60 C por 24 h. As amostras S-80/20 (Sintetizada sem hexadecilamina), S-12,5% (Sintetizada com uma massa de 0,0103g de hexadecilamina) e S-25% (Sintetizada com uma massa de 0,0205g de hexadecilamina) foram levadas para caracterizações (DRX e Espectroscopia Raman).

Os padrões de difração de raios X das amostras (Figura 1) apresentam os planos cristalográficos característicos da estrutura ZIF-8 original ((110), (200), (211) e (222)). A amostra S-80/20 obteve picos com intensidades maiores e mais finos em relação as amostras S-12,5% e S-25% que obtiveram picos com intensidades mais baixas e mais alargados. Isso ocorreu devido à diminuição da cristanilidade e tamanho dos cristais (Tabela 1) das amostras com hexadecilamina, na qual a hexadecilamina pode causar imperfeições na rede cristalina, microtensões internas e uma menor cristalização.

**Tabela 1.** Tamanho dos domínios cristalinos de cada amostra, calculados a partir da equação de Scherrer. Dados em preto S-80/20, vermelho S-25% e verde 12,5%.


| Amostra | Plano | 2θ (°) | FWHM (°) | Tamanho<br>Cristalino<br>(nm) |
|---------|-------|--------|----------|-------------------------------|
| S-25%   | 110   | 7,32   | 0,36     | 22,11                         |
| S-25%   | 200   | 10,36  | 0,40     | 19,94                         |
| S-25%   | 211   | 12,68  | 0,40     | 19,98                         |
| S-25%   | 222   | 18,00  | 0,44     | 18,28                         |
| S-12,5% | 110   | 7,28   | 0,32     | 24,88                         |
| S-12,5% | 200   | 10,32  | 0,32     | 24,93                         |
| S-12,5% | 211   | 12,68  | 0,36     | 22,20                         |
| S-12,5% | 222   | 18,00  | 0,36     | 22,34                         |
| S-80/20 | 110   | 7,32   | 0,00333  | 41,76                         |
| S-80/20 | 200   | 10,36  | 0,00346  | 40,20                         |
| S-80/20 | 211   | 12,72  | 0,00349  | 39,93                         |
| S-80/20 | 222   | 18,04  | 0,00369  | 38,04                         |





**Figura 1.** Difração de Raios-X das amostras S-80/20 (Preto), S-25% (Vermelho), S-12,5% (Verde).

A espectroscopia Raman das amostras apresenta bandas características da estrutura ZIF-8 original, ligação simples entre o metal e o nitrogênio em 180 cm<sup>-1</sup>; vibração do anel imidazol em 685 cm<sup>-1</sup>; ligação simples entre o carbono e hidrogênio em 1146 cm<sup>-1</sup>; contração do anel imidazol em 1500 cm<sup>-1</sup> e ligações simples entre o carbono e hidrogênio em 2936 cm<sup>-1</sup> e 3138 cm<sup>-1</sup>.



**Figura 2.** Espectroscopia Raman das amostras S-80/20 (Preto), S-25% (Vermelho), S-12,5% (Verde).

#### Conclusões

Após as análises de difração de raios X e espectroscopia Raman, é possível concluir que as sínteses das amostras amino modificadas contendo Ni<sup>2+</sup> e Zn<sup>2+</sup>geraram os materiais desejados, em qual se observa uma diminuição do tamanho dos domínios cristalinos das amostras S-25% e S-12,5% em relação à amostra S-80/20 (Figura 1 e Tabela 1) devido a adição da hexadecilamina. Por fim, os materiais sintetizados podem apresentar um ótimo potencial para adsorção e redução de CO<sub>2</sub> que serão avaliados em trabalhos futuros.

#### Agradecimentos

Os autores agradecem as agências de fomento FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) e CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) e à SBCat (Sociedade Brasileira de Catálise).

## Referências

- NEUBERTOVÁ, Viktorie; ŠVORČÍK, Václav; KOLSKÁ, Zdeňka. Amino-modified ZIF-8 for enhanced CO2 capture: Synthesis, characterization and performance evaluation. Microporous and Mesoporous Materials, v. 366, p. 112956, 2024
- ZHANG, Xinru et al. Membranas de matriz mista baseadas em Zn/Ni-ZIF-8-PEBA para separação de CO2 de alto desempenho. Journal of Membrane