

Rh-Ni Bimetallic Catalysts for Enhanced Production of Cyclohexylamine via Reductive Amination.

Doris Ruiz^{1*}, Karen Morales¹, Luciene S. Carvalho², André Rosa Martins², Adriana Ballarini³, Andreia Peixoto⁴, Ricardo Chimentão¹

¹CATSVAL, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Ed. Larenas 129, Casilla 160-C, Concepción, Chile. *doruiz@udec.cl

²Instituto Federal da Bahia, Campus Camaçari, Av. Jorge Amado, s/n°, Jardim Limoeiro, 42.800-605, Camaçari-BA, Brasil.

³Instituto de Investigaciones en Catálisis y Petroquímica "Eng. JoséMiguel Parera" (CONICET-UNL), Colectora Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina

⁴REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal

Abstract

The reductive amination of cyclohexanone with NH₃ and H₂ over Rh and Rh–Ni catalysts supported on SiO₂ was studied to produce cyclohexylamine, a key intermediate in fine chemicals. Catalysts with varying Ni loadings (1–10 wt.%) were prepared by wet impregnation and characterized by N₂ physisorption, TEM, XRD, XPS, H₂-TPR, and NH₃-TPD. Bimetallic Rh–Ni catalysts exhibited improved catalytic performance due to enhanced dispersion, reducibility, and acidity. The 2 wt.% NiRh/SiO₂ catalyst showed the best results, with 99.8% conversion, 96.4% yield, and 96.6% selectivity. Rh/SiO₂ reached 83.4% conversion and 99.1% selectivity. Reusability tests confirmed the stability of the bimetallic catalyst, which maintained 99.5% selectivity and 74.0% yield after four cycles.

Keywords: Rhodium-Nickel, Amination, Heterogeneous Catalysis, Bimetallic Catalysts

Introduction

Primary amines are key intermediates in pharmaceuticals, agrochemicals, polymers, and dyes, making their efficient synthesis a relevant challenge. Among several methods, reductive amination of carbonyl compounds stands out for its selectivity and green credentials (1). However, when using NH₃ and H₂, harsh conditions are often required, and overalkylation remains a challenge. Heterogeneous catalysts, especially noble metals like Rh and earthabundant Ni, play a crucial role in improving selectivity under milder conditions (2,3). Rh is highly selective toward primary amines (4,5), while Ni offers a cost-effective alternative. In this context, cyclohexanone amination is industrially relevant for producing cyclohexylamine (Scheme 1).

cyclohexanon

NH₃ -H₂O

Neyclohexylamine

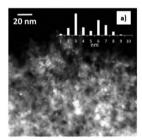
cyclohexylamine

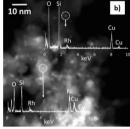
cyclohexylamine

Scheme 1. Reaction scheme for reductive amination of cyclohexanone.

This study investigates the catalytic behavior of Rh and Rh–Ni/SiO₂ catalysts under mild conditions (100 °C, 4 bar NH₃, 2 bar H₂), showing high selectivity to cyclohexylamine without forming secondary or tertiary amines, and highlighting the synergistic effect of Rh–Ni bimetallic systems.

Experimental


Rh/SiO₂ (1.7 wt.%) and Rh–Ni/SiO₂ (1–10 wt.% Ni) catalysts were prepared by wet and successive impregnation, calcined at 400 °C, and reduced under H₂. Textural properties were determined by N₂ physisorption (BET, BJH), while TEM, HRTEM–STEM–EDX, XRD, and XPS were used for structural and surface analysis. Reducibility and acidity were evaluated by H₂-TPR and NH₃-TPD. Catalytic tests were conducted in a glass-lined reactor at 100 °C, 4 bar NH₃, and 2 bar H₂, using 50 mL of cyclohexane and a 100:1 cyclohexanone/Rh molar ratio. Reusability was assessed by recovering, washing, and drying the catalyst after each run. Products were analyzed by GC-FID and confirmed by mass spectrometry.

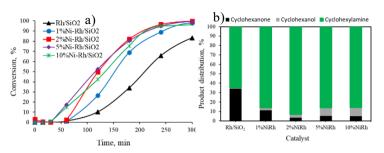


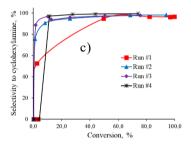
Results and Discussion

I he incorporation of Rh and Ni into SiO₂ significantly influenced the catalysts' textural and physicochemical properties. N₂ physisorption showed a decrease in surface area and pore volume after metal impregnation, except for the 2 wt.%NiRh/SiO₂ catalyst, which exhibited increased surface area, likely due to Rh redispersion. TEM and HRTEM (Figure 1) revealed small, well-dispersed nanoparticles (~2 nm), with a bimodal distribution in 10 wt.%NiRh/SiO₂ due to Ni agglomeration. XRD confirmed the presence of crystalline Ni and high Rh dispersion, while XPS indicated predominantly metallic Rh^o and Ni^o species. The 2 wt.%NiRh/SiO₂ catalyst showed the highest metal surface exposure.

H₂-TPR and NH₃-TPD analyses highlighted variations in reducibility and acidity. The 2 wt.%NiRh/SiO₂ catalyst exhibited favorable features: high dispersion, low acidity, and moderate H₂ uptake, correlating with improved selectivity in reductive amination. Overall, this catalyst achieved an optimal balance between metal accessibility and acid site density, favoring primary amine formation while minimizing side reactions.

Figure 1. HRTEM Micrographs of 10wt.%NiRh/SiO₂ catalyst: a) HAADF-STEM, b) HAADF-STEM-EDX.


The reductive amination of cyclohexanone with NH₃ and H₂ was carried out using Rh/SiO₂ and NiRh/SiO₂ catalysts under mild conditions (100 °C, 4 bar NH₃, 2 bar H₂). The reduced Rh/SiO₂ catalyst reached 83.4% conversion and 99.1% selectivity to cyclohexylamine. Selectivity was strongly influenced by the NH₃/H₂ ratio, with ammonia promoting imine formation and hydrogen enabling its reduction.


The bimetallic 2 wt.%NiRh/SiO₂ catalyst exhibited superior performance, achieving 99.8% conversion and 96.6% selectivity at 300 min. Higher Ni loadings (>5 wt.%) led to reduced conversion and increased cyclohexanol formation, attributed to changes in metal dispersion and acidity.

Catalyst reuse confirmed the robustness of the 2 wt.%NiRh/SiO₂ system: after four cycles, it maintained 99% selectivity and 74% yield. These results demonstrate the advantages of bimetallic tuning in improving catalytic

efficiency, selectivity, and recyclability for the selective synthesis of primary amines.

Figure 3. Cyclohexanone amination a) Conversion on time over NiRh/SiO₂, b) Product distribution over NiRh/SiO₂ at 240 min, c) Recycle of 2wt.%NiRh/SiO₂

Conclussion

The reductive amination of cyclohexanone over NiRh/SiO₂ catalysts demonstrated that bimetallic modification significantly enhances catalytic performance. While Rh/SiO₂ showed high selectivity (99.1%) and moderate conversion (83.4%), the incorporation of 2 wt.% Ni increased conversion to 99.8%, yield to 96.4%, and selectivity to 96.6%. This catalyst also maintained 99.5% selectivity and 74.0% yield after four reuse cycles, confirming its stability. The integration of Ni into Rh/SiO₂ provides a cost-effective, efficient, and recyclable system for the selective synthesis of primary amines.

Acknowledgments

To VRID-UdeC, FCQ-UdeC, FONDECYT 1220355, and Dr. Jordi Llorca (UPC, Spain) for HRTEM analysis.

References.

- D. Ruiz; A. Aho; T. Saloranta; K. Eränen; J. Wärnå; R; Leino; D.Y. Murzin., *Chem. Eng. J.* 2017, 307, 739–749.
- D. Ruiz; A. Aho; P. Mäki-Arvela; N. Kumar; H. Oliva;
 D.Y. Murzin, *Ind. Eng. Chem. Res.* 2017, 56, 12878–12887.
- 3. X. PJv; S. Sun; Q. Zhang; M. Du; L. Wang; B. Wang, *ACS Sustainable Chem. Eng.* **2020**, *8*, 1618–1626.
- 4. S. Kirschtowski; C. Kadar; A. Seidel-Morgenstern; C. Hamel, *Chem. Ing. Tech.* **2020**, *92*, 582–588.
- J. Bianga; N. Kopplin; J. Hülsmann; D. Vogt; T. Seidensticker, *Adv. Synth. Catal.* 2020, 362, 4415–4424.