

Synthesis of zeolite X from oil well drill cuttings for CO2 capture

Vanessa de Jesus Silva¹, Lourdes Oliveira Galvão^{1,2,3}, Yanier Sánchez Hechavarria^{2,3}, Raildo Alves Fiuza Junior^{1,2,3}, Karen Valverde Pontes^{1,2,3}, Silvio Alexandre Beisl Vieira de Melo^{1,2,3}, Artur José Santos Mascarenhas^{1,2,3,*}

- ¹ Laboratório de Catálise e Materiais LABCAT, Departamento de Química Geral e Inorgânica, Instituto de Química, Universidade Federal da Bahia, Travessa Barão de Jeremoabo, 147, Campus Ondina, 40170-280, Salvador BA.
- ² Programa de Pós-Graduação em Energia e Ambiente (PGENAM), Escola Politécnica, Universidade Federal da Bahia, R. Prof Aristides Novis, 2, Federação, 40120-910, Salvador-Ba.
- ³Laboratório de Captura de CO₂ LABCO2, CIENAM, Campus de Ondina, Universidade Federal da Bahia, Salvador-BA, 40170-115, Brasil.

*E-mail: artur@ufba.br

Resumo/Abstract

RESUMO – Um dos resíduos mais abundantes do processo de exploração de gás natural e petróleo é o cascalho de perfuração. Neste trabalho, o cascalho de perfuração de poços foi estudado como matéria prima sustentável para a síntese de zeólito X, que é um excelente adorvente empregado para capturar CO₂. A análise elementar da amostra de cascalho por fluorescência de raios X revelou um material rico em SiO₂ (52,91%) e Al₂O₃ (17,95%). O processo de síntese foi realizado em três etapas: (i) tratamento hidrotérmico do cascalho em NaOH 8 mol L⁻¹ a 200°C por 20 h, originando hidroxicancrinita (CAN); (ii) solubilização da hidroxicancrinita com HCl 37% e reciclagem do líquido alcalino obtido na etapa "i" para ajuste do pH em 14; e (3) cristalização hidrotérmica a 100°C por 44 h. O material obtido ao final do processo apresentou topologia faujasita (FAU) com elevada área superficial BET (632 m².g⁻¹) e capacidade de captura de CO₂ de 12,6% (2,864 mmol.g⁻¹). Esses resultados indicam que esta é uma rota sustentável para aproveitamento deste resíduo da indústria de petróleo para mitigar as emissões de CO₂.

Palavras-chave: Sustentabilidade, cascalho de perfuração, Captura de CO₂, zeólito X.

ABSTRACT – One of the most abundant waste products from the natural gas and oil exploration process is drill cuttings. In this work, drill cuttings were studied as a sustainable raw material for synthesizing zeolite X, an excellent adsorbent used to capture CO₂. Elemental analysis of the cuttings sample by X-ray Fluorescence revealed a material rich in SiO₂ (52.91%) and Al₂O₃ (17.95%). The synthesis process was carried out in three steps: (i) hydrothermal treatment of the cuttings in 8 mol.L⁻¹ NaOH at 200°C for 20 h, yielding hydroxycancrinite (CAN); (ii) solubilization of hydroxycancrinite with 37% HCl and recycling of the alkaline liquid obtained in step "i" to adjust the pH to 14; and (3) hydrothermal crystallization at 100°C for 44 h. The material obtained at the end of the process presented faujasite topology (FAU) with a high BET surface area (632 m².g⁻¹) and a CO₂ capture capacity of 12.6% (2.864 mmol.g⁻¹). These results indicate that this is a sustainable route for using this residue from the oil industry to mitigate CO₂ emissions.

Keywords: Sustainability, drill cuttings, CO₂ capture, zeolite X.

Introduction

With the increase in oil and natural gas production, there has also been an increase in waste generation from well drilling. Depending on the case, this waste can cause environmental impacts due to its composition, which contains heavy metals, hydrocarbons, and radioactive elements (1-3).

The cuttings generated during oil well drilling have a large amount of silica and alumina in their composition. This makes this waste a promising raw material for zeolite production (1-4).

Zeolites are microporous crystalline aluminosilicates whose three-dimensional structure is built from TO_4 tetrahedral units (T = Si or Al). These materials have been widely investigated as adsorbents, ion exchangers, and catalysts (5). In particular, zeolites with LTA (zeolite A) and FAU (zeolites X and Y) topologies have been used in CO_2 capture (6).

In this context, this work transforms drilling well cuttings into zeolite X with the aim of applying this material in CO_2 adsorption studies.

Experimental

Zeolite synthesis

The zeolite was synthesized in three steps: (i) Alkaline activation of the gravel, NaOH and water mixture at 200°C for 20 h in an autoclave to solubilize the silica; (ii) Acid dissolution: The solid obtained in the previous step was mixed with water and treated with 37% HCl at 80°C for 60 min under stirring; and (iii) Alkaline precipitation and crystallization: In the acid dissolution, the alkaline liquid recycled in the first step was also added until pH \approx 14, followed by hydrothermal treatment at 100°C for 44 h. The materials were characterized by TG, SEM, XRD, XRF and textural analysis by N_2 physisorption.

CO2 adsorption by TG

The TSA method was performed by thermogravimetric analysis using a Shimadzu DTG-60H instrument. The test schedule consists of the following steps: (i) Drying of the material at 350°C for 30 min under N_2 flow (100 mL.min⁻¹); (ii) Cooling to 30°C under N_2 flow (100 mL.min⁻¹); (iii) Introduction of a gas mixture CO_2 : N_2 = 1:1, for 30 min, with a total flow of 100 mL min⁻¹; and (iv) The gas was exchanged for N_2 at a flow rate of 100 mL.min⁻¹, and the sample was heated to 200°C for desorption.

Results and Discussion

Characterization of the materials

Thermogravimetric analysis revealed significant mass loss in the drill cuttings (16.42%) and in the NaX zeolite (15.37%), associated with dehydration and loss of adsorbed gases. Elemental analysis of the cuttings showed 52.9% SiO₂ and 17.9% Al₂O₃, indicating the potential of the material as a precursor for zeolite production. The X-ray diffractogram confirmed crystalline phases as hydroxycancrinite and NaX zeolite (FAU topology), while electron microscopy highlighted typical morphologies for each material.

The N_2 adsorption isotherms of gravel are classified as mixed between type II and IV (loop H3) and the NaX zeolite as type I (loop H4) (7). The zeolite demonstrated a high micropore area (632 m².g¹¹) and a predominance of pores in the 1.0–1.5 nm (0.2456 cm³.g¹¹). Textural properties highlighted a significant increase in the surface area of the synthesized zeolite (632 m².g¹¹) compared to gravel (42 m².g¹¹), reinforcing its potential as an adsorbent for CO_2 capture.

CO2 adsorption by TG

The curve obtained in the study of the CO₂ adsorption/desorption capacity of the synthesized NaX zeolite is shown in Figure 1. In the adsorption process, the zeolite presented an adsorption capacity of around 12.6% of CO₂, indicating that the synthesized material presents an

adsorption capacity (2.864 mmol.g⁻¹) close to other materials described in the literature (6).

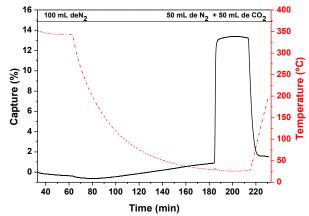


Figure 1. CO_2 adsorption-desorption curves of the synthesized zeolite through TSA.

Conclusions

The study demonstrated that it is feasible to use oil well drilling cuttings as a sustainable precursor for synthesizing zeolite X, with potential application in CO₂ capture. The three-step synthesis methodology allowed the production of zeolite X (faujasite topology) with high surface area (632 m².g⁻¹), adequate porosity (0.2456 cm³ g⁻¹) and high carbon dioxide adsorption capacity (12.6% or 2.864 mmol.g⁻¹).

Acknowledgements

The authors acknowledge the Brazilian National Agency for Petroleum, Natural Gas and Biofuels (ANP) and China National Petroleum Corporation (CNPC Brasil) for subsidizing the research project through the R&D Clause.

References

- 1. T. J. Santos, Tese de Doutorado, Universidade Federal da Bahia, 2023.
- 2. X. Wang; L. Goual; P. J. S. Colberg. Journal of Hazardous Materials, **2012**, *199*, 301-310.
- 3. J. Liu. Journal of Cleaner Production, 2023, 366.
- 4. G. N. Muriithi; L. F. Petrik; F. j. Doucet. Journal of CO₂ Utilization, **2020**, *36*, 220-230.
- 5. E. C. Oliveira, A. J. S. Mascarenhas, H. O. Pastore. Química Nova na Escola: cadernos temáticos, **2001**.
- A. da Silva; E. B. Costa; D. Elias; T. J. T. Cruz; F. G. H. S. Pinto; M. I. S. de Mello; L. Bieseki; S. B. C. Pergher. Coatings 2024, 14, 680.
- 7. M. Thommes; K. Kaneko; A. V. Neimark; J. P. Oliver; F. R. Reinoso; J. Rouquerol; K. S. W. Sing. Pure Appl. Chem. **2015**, 87(9-10), 1051–1069.