

Hidrogenação do CO₂ a Metano Utilizando Catalisadores de Níquel Suportados em Nióbia e Alumina

Brenda L. H. Ru¹, Mariana M. V. M. Souza¹, Robinson L. Manfro^{1*}

¹Laboratório de Tecnologias do Hidrogênio, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. Email: robinson@eq.ufrj.br

Resumo/Abstract

RESUMO - O dióxido de carbono (CO₂) é um dos gases que mais contribuem para o aquecimento global. A metanação do CO₂ surge como alternativa promissora para reduzir suas emissões e atender à demanda energética via conversão em metano (CH₄). Este trabalho visou desenvolver e avaliar catalisadores de níquel suportados em nióbia e alumina, buscando alta atividade e seletividade na produção de CH₄. A nióbia foi usada por suas propriedades que favorecem a queima de coque e a interação metal-suporte. Catalisadores com 20 % m/m de NiO e teores de nióbia de 0, 5, 10 e 20 % m/m foram sintetizados por impregnação úmida e calcinados a 650 °C. As amostras foram caracterizadas por DRX, FRX, fisissorção de N₂, TPR e TPD-NH₃. Os testes catalíticos ocorreram com catalisadores reduzidos a 800 °C, vazão de 200 mL/min, razão molar H₂/CO₂ = 4 e temperatura de 200 a 450 °C. Todos os catalisadores aumentaram a conversão do CO₂ até 400 °C, com leve perda de seletividade a 450 °C. Nos testes de estabilidade a 400 °C por 30 h, as conversões médias de CO₂ e seletividades a CH₄ foram: NiAl (55 %, 87 %), Ni5NbAl (56 %, 88 %), Ni10NbAl (44 %, 83 %) e Ni20NbAl (18 %, 70 %), sem perda de atividade.

Palavras-chave: Hidrogenação, Dióxido de carbono, Metanação, Níquel.

ABSTRACT - Carbon dioxide (CO₂) is one of the most significant contributor gas to the global warming intensification. CO₂ methanation emerges as a promising route to reduce emissions and meet energy demand by converting CO₂ into methane (CH₄). This work aimed to develop and evaluate nickel-based catalysts supported on niobia and alumina, targeting high activity and selectivity for CH₄ production. Niobia was used for its properties that enhance coke burning and metal-support interaction. Catalysts with 20 % wt NiO and niobia contents of 0, 5, 10, and 20 % wt were synthesized by wet impregnation and calcined at 650 °C. The samples were characterized by XRD, XRF, N₂ physisorption, TPR, and NH₃-TPD. Catalytic tests were conducted with catalysts reduced at 800 °C, using a flow rate of 200 mL/min, H₂/CO₂ molar ratio of 4, and temperatures ranging from 200 to 450 °C. All catalysts increased CO₂ conversion up to 400 °C, with a slight loss of selectivity at 450 °C. In the stability tests at 400 °C for 30 h, the average CO₂ conversions and CH₄ selectivities were: NiAl (55 %, 87 %), Ni5NbAl (56 %, 88 %), Ni10NbAl (44 %, 83 %), and Ni20NbAl (18 %, 70 %), with no loss of activity.

Keywords: Hydrogenation, Carbon dioxide, Methanation, Nickel.

Introdução

Desde a Revolução Industrial, os combustíveis fósseis tornaram-se essenciais para a produção de energia e insumos químicos, apesar de sua finitude e do esgotamento dos recursos naturais (1). A combustão desses combustíveis é a principal fonte de emissões de CO₂, gás de efeito estufa com grande impacto no aquecimento global. Frente ao aumento contínuo das concentrações atmosféricas de CO₂ e à dependência de fontes fósseis, a conversão do CO₂ em compostos de maior valor agregado surge como estratégia promissora (2).

A metanação do CO₂ é uma rota catalítica relevante, gerando metano (CH₄), combustível que pode atender parte da demanda energética (3). Catalisadores de níquel são amplamente estudados por sua alta atividade e baixo custo, embora apresentem tendência à formação de coque (4). O uso de suportes óxidos metálicos é amplamente estudado na literatura por proporcionarem modificações nas propriedades da superfície catalítica, auxiliando no controle

do tamanho da partícula e estabilização das partículas de níquel devido à forte interação metal-suporte (5). Alguns suportes como Al₂O₃ e Nb₂O₅ podem reduzir a desativação do níquel, favorecendo a dispersão metálica e a estabilidade catalítica (6). Neste trabalho desenvolveu-se catalisadores de níquel suportados em nióbia e alumina, avaliando seu desempenho na metanação do CO₂ e a influência da nióbia na resistência à formação de coque.

Experimental

Preparação dos catalisadores

Foram preparados quatro catalisadores de NiO suportados em γ -Al₂O₃ e Nb₂O₅ de composição 20 % m/m NiO-xNb₂O₅-Al₂O₃ (denominados como NixNbAl), com x igual a 0, 5, 10 ou 20 % m/m. A alumina (BASF) foi inicialmente calcinada a 500 °C (10 °C/min) por 3 h. O nitrato de níquel (Sigma-Aldrich) e o oxalato amoniacal de nióbio (CBMM) foram dissolvidos separadamente em água destilada e deionizada para atingir as concentrações

desejadas. As soluções foram adicionadas à alumina calcinada em balão. Em seguida, o balão foi acoplado a um rotaevaporador (IKA RV 10 Digital), sob rotação de 100 rpm à temperatura ambiente por 1 h. Após homogeneização, o excesso de solvente foi removido por evaporação a 70 °C sob vácuo. O material obtido passou por uma secagem em estufa a 100 °C por 24 h e, posteriormente, foi calcinado a 650 °C (10 °C/min) por 3 h sob fluxo de ar (60 mL/min).

Caracterização dos catalisadores

A composição química dos catalisadores calcinados foi determinada pela técnica de fluorescência de raios X (FRX) usando um espectrômetro Rigaku, modelo Primini, com tubo gerador de raios X de paládio. As amostras, na forma de pó, foram depositadas em suportes apropriados e cobertas com filme de polipropileno para as análises.

As propriedades texturais foram determinadas por fisissorção de N₂ em um equipamento Tristar 3000. A área específica foi calculada pelo método BET e o volume de poros pelo método BJH, a partir da isoterma de adsorção. As amostras, previamente reduzidas *ex situ* sob as mesmas condições da reação (temperatura definida por TPR), foram secas a 300 °C sob vácuo por 24 h. Após nova pesagem, a análise de fisissorção de N₂ foi realizada a -196 °C para obtenção das isotermas de adsorção e dessorção em diferentes pressões parciais.

A identificação das fases cristalinas dos materiais sintetizados foi realizada por difração de raios X em um difratômetro Rigaku Miniflex II, com radiação CuKα (30 kV, 15 mA). As análises foram feitas em varredura de 2θ entre 5° e 90°, com passo de 0,05° e tempo de contagem de 1 s por passo. Os dados ICDD (International Center for Diffraction Data) foram utilizados como referência para identificação das fases cristalinas a partir dos padrões de difração formados. A partir dos difratogramas dos catalisadores reduzidos, foi calculado o diâmetro médio dos cristais de níquel através da equação de Scherrer e, então, a dispersão do níquel pode ser estimada de acordo com equação de Anderson (7).

A redução a temperatura programada (TPR) forneceu os perfis de redução dos catalisadores sintetizados, permitindo a determinação do grau de redução e a facilidade de redução dos elementos presentes. A análise foi realizada em reator de quartzo com bulbo, utilizando cerca de 50 mg de catalisador (equivalente a 10 mg de NiO). O sistema contava com forno controlado, válvulas micrométricas, alimentação de gases (2 % H₂/Ar e Ar puro) e detector de condutividade térmica (TCD). Inicialmente, as amostras foram préaquecidas até 150 °C (10 °C/min) sob 30 mL/min de Ar por 30 min para remoção de umidade, e então resfriadas até a temperatura ambiente. Após estabilização do sinal do TCD, foi realizada a rampa de aquecimento até 1000 °C (10 °C/min) sob fluxo de 2 % H₂/Ar (30 mL/min), obtendo-se o perfil de redução.

A acidez dos catalisadores foi avaliada por dessorção à temperatura programada de amônia (TPD-NH₃), realizada com 150 mg de catalisador em reator de quartzo com bulbo. O sistema contava com forno controlado, linhas de alimentação de gases (4 % NH₃/He e He puro) e espectrômetro de massa QME-220 (Pfeiffer), utilizando razão m/z = 15 para quantificação da NH₃. As amostras foram reduzidas *in situ* a 800 °C (10 °C/min) sob 2 % H₂/Ar (30 mL/min) por 30 min e resfriadas sob He. A adsorção de NH₃ foi realizada a 70 °C com 4 % NH₃/He (30 mL/min) por 30 min, seguida de purga com He puro por 60 min. A dessorção foi conduzida até 1000 °C a 20 °C/min sob fluxo de He (30 mL/min).

Testes catalíticos

Os testes catalíticos foram realizados em unidade reacional de fluxo contínuo, com linhas aquecidas a 140 °C, empregando reator de quartzo de leito fixo à pressão atmosférica. A unidade também comporta um forno com controle de temperatura, linhas com os gases necessários e controladores de vazão. Foi utilizado uma massa de 50 mg de catalisador diluída em 250 mg de carbeto de silício. Antes de cada reação, os catalisadores foram reduzidos in situ a 800 °C (10 °C/min) durante 30 min, empregando uma mistura redutora composta por 33 % H₂/N₂ com vazão total de 90 mL/min. A temperatura de redução foi definida com base nos resultados obtidos a partir da análise do TPR. Os testes reacionais foram realizados utilizado uma vazão total de 200 mL/min composta por 143 mL/min da mistura 10 % CO₂/He e 57 mL/min de H₂ puro, representando com a razão molar $H_2/CO_2 = 4$ e uma velocidade espacial 240.000 mL/g_{cat}.h. Os produtos da reação foram analisados on-line por cromatografia gasosa utilizando uma coluna Carboxen 1010 e detector de condutividade térmica (TCD). Foram realizados testes catalíticos em diferentes temperaturas de 200 °C a 450 °C a um intervalo de 50 °C. No segundo conjunto de reações, foram executados testes de estabilidade catalítica durante 30 h a 400 °C.

Resultados e Discussão

Caracterização dos catalisadores

A Tabela 1 apresenta a composição química dos catalisadores calcinados a 650 °C. As porcentagens de NiO ficaram próximas ao valor teórico, enquanto discrepâncias maiores foram observadas para o valor nominal e real do Nb₂O₅, atribuídas a possíveis erros na preparação, como pesagem ou umidade do precursor, ou a limitações da análise semiquantitativa.

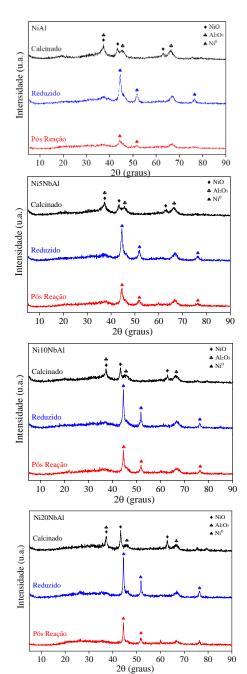
A análise textural dos catalisadores reduzidos, obtida por fisissorção de N₂ (Tabela 2), mostrou que teores de 5 e 10 % m/m de nióbia não alteraram significativamente a área específica, o volume e o diâmetro médio de poros em relação ao catalisador sem nióbia, havendo apenas leve aumento de área e pequena redução no diâmetro dos poros.

Já com 20 % m/m de nióbia, observou-se redução nas propriedades texturais, efeito também relatado em (8) e (9), atribuído à menor área específica da nióbia e possível bloqueio de poros da alumina. As isotermas de adsorção-dessorção de N₂ (resultados não apresentados) apresentaram perfil tipo IV com histerese H3, característico de materiais mesoporosos com poros em fenda formados por agregados de partículas em forma de placa (10).

Tabela 1. Resultados obtidos pela análise de FRX para os catalisadores sintetizados e calcinados a $650\,^{\circ}\text{C}$ (% m/m).

Catalisador	NiO		Nb ₂ O ₅		Al ₂ O ₃	
	Teórica	Real	Teórica	Real	Teórica	Real
NiAl	20	19,2	-	-	80	80,8
Ni5NbAl	20	19,5	5	3,1	75	77,4
Ni10NbAl	20	20,7	10	7,0	70	72,3
Ni20NbAl	20	21,0	20	14,8	60	64,2

Tabela 2. Área específica, volume de poros e diâmetro médio de poros referente aos catalisadores reduzidos.


Catalisador	Área BET (m²/g _{cat})	Volume de poros (cm³/g _{cat})	Diâmetro médio de poros (Å)
NiAl	178	0,59	132
Ni5NbAl	181	0,56	123
Ni10NbAl	184	0,54	117
Ni20NbAl	157	0,40	101

Os difratogramas de raios X dos catalisadores calcinados, reduzidos *ex situ* e pós-reação estão apresentados na Figura 1. Nos catalisadores calcinados, foram identificados picos de NiO (JCPDS 47-1049), enquanto nos catalisadores reduzidos surgiram picos de Ni metálico (JCPDS 04-0850), confirmando a eficiência da redução. Picos de γ-Al₂O₃ (JCPDS 86-1410) foram observados em todas as amostras, sem identificação de picos de Nb₂O₅, indicando sua alta dispersão na alumina (10).

Nos catalisadores pós-reação de estabilidade (400 °C/30 h), não foram detectados picos de coque (20 $\approx 26^\circ$), sugerindo baixa deposição de carbono e manutenção da fase metálica. O diâmetro médio dos cristalitos de Ni 0 foi calculado pela equação de Scherrer usando o pico $2\theta = 51,8^\circ$, conforme apresentado na Tabela 3. Os catalisadores NiAl e Ni5NbAl apresentaram tamanhos de cristalitos semelhantes, indicando que 5 % de nióbia não impacta a dispersão metálica. Já o Ni20NbAl exibiu maior tamanho de cristalito e menor dispersão, atribuídos à migração de NbO $_x$ para a superfície durante a redução (12).

Após os testes catalíticos, os tamanhos médios dos cristalitos mostraram tendência de diminuição, principalmente para o Ni20NbAl, possivelmente devido à redistribuição do Ni, favorecendo menor formação de coque (13). Resultados semelhantes foram observados na literatura (8, 14).

Figura 1. Difratogramas dos catalisadores NiAl, Ni5NbAl, Ni10NbAl e Ni20NbAl calcinados a 650 °C, reduzidos a 800 °C e pós reação de estabilidade (30 h).

Tabela 3. Tamanho médio de cristalitos de níquel metálico e dispersão metálica dos catalisadores reduzidos e pós-reação (30 h).

	Reduzido		Pós-reação		
Catalisador	Tamanho cristalito (nm)	Dispersão (%)	Tamanho cristalito (nm)	Dispersão (%)	
NiAl	$8,6 \pm 0,7$	11,7	-	-	
Ni5NbAl	$8,7 \pm 0,7$	11,6	$7,6 \pm 1,0$	13,3	
Ni10NbAl	$14,5 \pm 1,4$	6,9	$13,3 \pm 1,7$	7,6	
Ni20NbAl	$21,3\pm2,6$	4,7	$14{,}5\pm1{,}6$	6,9	

Pelos perfis de TPR dos catalisadores calcinados (Figura 2), observa-se que o aumento do teor de nióbia favorece a formação de espécies de níquel com fraca interação com a alumina, evidenciada pelo surgimento de picos de redução em torno de 400 °C. Conforme a literatura (15), NiO pode apresentar três formas: mássico (pico ~400 °C), interagindo com a alumina (400–700 °C) e incorporado como NiAl₂O₄ (>700 °C). O perfil do NiAl exibe um amplo pico centrado em ~800 °C, indicando forte interação e possível formação de aluminato de níquel, ainda que não detectada nos difratogramas de DRX.

O Ni5NbAl apresenta perfil semelhante ao NiAl, mas com leve pico de redução a 380 °C, sugerindo enfraquecimento da interação níquel-suporte. Nos catalisadores Ni10NbAl e Ni20NbAl, o pico de baixa temperatura de redução se intensifica com o aumento da nióbia, enquanto picos sobrepostos entre 630 e 800 °C indicam diferentes interações de NiO com o suporte.

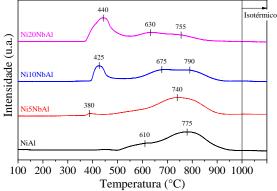
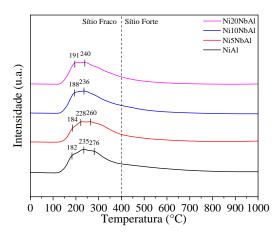



Figura 2. Perfis de redução dos catalisadores calcinados.

Os graus de redução dos catalisadores (Tabela 4), calculados pela razão entre o consumo experimental de H₂ e o teórico baseado no teor de NiO por FRX, mostrou que a adição de nióbia diminui levemente o grau de redução, possivelmente pela cobertura de partículas de níquel por espécies de NbO_x, reduzindo a dispersão e dificultando a redução de Ni²⁺ para Ni⁰ (12). Essa diminuição de 89 % (NiAl) para 80 % (Ni20NbAl) pode impactar negativamente a atividade catalítica dos materiais com maior teor de nióbia.

Os perfis de TPD-NH₃ dos catalisadores reduzidos (Figura 3) mostraram picos concentrados em sítios ácidos fracos (<400 °C) (18). A acidez total, obtida por integração dos perfis e normalizada pela área específica, está apresentada na Tabela 5. Os catalisadores exibiram distribuições semelhantes de sítios fracos (72-83 %) e fortes (17-28 %), com acidez total entre 375 e 429 µmol NH₃/g. A adição de nióbia promoveu leve aumento na densidade ácida (µmol NH₃/m²). Resultados similares foram observados na literatura (9, 19-20), confirmando o aumento da acidez com a adição de Nb₂O₅ à alumina.

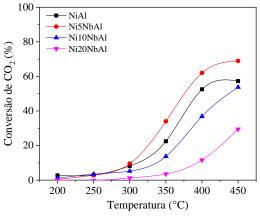
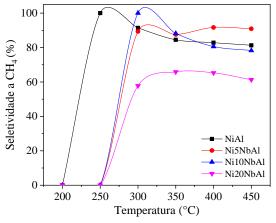

Figura 3. Perfis de dessorção de NH₃ dos catalisadores calcinados a 650 °C e reduzidos in situ a 800 °C por 1 h.

Tabela 4. Distribuição dos sítios ácidos, quantificação e densidade obtidos a partir da análise de TPD-NH₃ e grau de redução (GR).

Catalisador	Sítios ácidos (%)		μmol NH3/g	μmol NH3/m²	GR (%)
	Fraco	Forte			
NiAl	72	28	375	2,10	89
Ni5NbAl	75	25	400	2,21	85
Ni10NbAl	79	21	429	2,33	81
Ni20NbAl	83	17	389	2,47	80

Testes catalíticos

A avaliação do efeito da temperatura nas reações de metanação do CO₂ revelou conversões praticamente nulas a 200 °C. No entanto, com o aumento da temperatura, observou-se um aumento progressivo da conversão até 400 °C, temperatura na qual a conversão se estabilizou (Figura 4). Esse comportamento indica a necessidade de temperaturas mais elevadas para a ativação das moléculas



de CO2, devido à sua elevada estabilidade.

Figura 4. Conversão de CO₂ na metanação do CO₂ em função da temperatura para os catalisadores NiAl, Ni5NbAl, Ni10NbAl e Ni20NbAl.

Os maiores valores de seletividade para CH4 foram alcançados em temperaturas mais baixas, na faixa de 250 a 300 °C. Nos testes catalíticos, os catalisadores NiAl, Ni10NbAl e Ni20NbAl apresentaram uma leve tendência de redução da seletividade para CH4 com o aumento da temperatura reacional (Figura 5). Em contraste, o catalisador Ni5NbAl não apenas exibiu os maiores valores de seletividade para CH4 em temperaturas mais elevadas, como também demonstrou notável estabilidade frente às variações de temperatura.

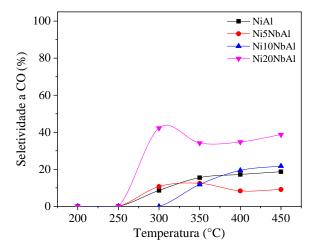
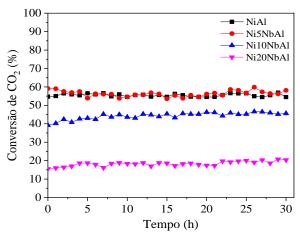
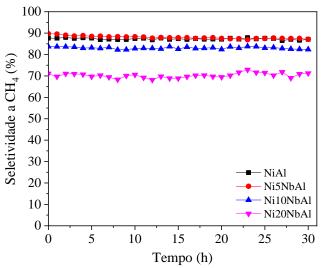


Figura 5. Seletividade a CH₄ na metanação do CO₂ em função da temperatura para os catalisadores NiAl, Ni5NbAl, Ni10NbAl e Ni20NbAl.

O principal subproduto da reação de metanação do CO₂ é o monóxido de carbono (CO), formado pela reação reversa de deslocamento gás-água (RWGS), a qual é favorecida com o aumento da temperatura. Dentre os catalisadores sintetizados, o catalisador Ni5NbAl foi o que apresentou as menores seletividades para o CO (Figura 6).


De modo geral, todos os catalisadores apresentaram comportamentos semelhantes, contudo, o Ni5NbAl destacou-se por alcançar as maiores conversões de CO₂, associadas às maiores seletividades para CH₄ em temperaturas mais elevadas. Especificamente a 400 °C, esse catalisador atingiu uma conversão de 62%, com seletividade para CH₄ de 91%. Assim, com base nos resultados, os catalisadores podem ser ordenados da seguinte forma: Ni5NbAl > NiAl > Ni10NbAl > Ni20NbAl. O Ni20NbAl apresentou o pior desempenho em toda a faixa avaliada, indicando que teores de nióbia acima de 5 % prejudicam a atividade catalítica.


Figura 6. Seletividade a CO na metanação do CO₂ em função da temperatura para os catalisadores NiAl, Ni5NbAl, Ni10NbAl e Ni20NbAl.

A estabilidade dos catalisadores foi avaliada ao longo de 30 horas a 400 °C. Essa temperatura foi selecionada por maximizar simultaneamente a conversão e a seletividade para CH₄, sem comprometer a limitação termodinâmica da reação (21). Os catalisadores NiAl e Ni5NbAl apresentaram os melhores desempenhos, com conversões médias de CO2 entre 55% e 56% e seletividades para CH₄ entre 87% e 88% (Figuras 7 e 8). O catalisador Ni10NbAl exibiu desempenho intermediário, com conversão de 44% e seletividade de 83%, enquanto o Ni20NbAl apresentou o pior desempenho, com conversão de 18% e seletividade de 70%. A adição de 5% de nióbia resultou em um leve incremento no rendimento de CH4 (50% para Ni5NbAl em comparação a 48% para NiAl); entretanto, teores superiores de nióbia reduziram a atividade catalítica. Todos os catalisadores mantiveram estabilidade durante o teste, sem evidências de sinterização ou formação de coque.

Figura 7. Conversão de CO₂ ao longo de 30 h para os catalisadores NiAl, Ni5NbAl, Ni10NbAl e Ni20NbAl.

Figura 8. Seletividade a CH₄ ao longo de 30 h para os catalisadores NiAl, Ni5NbAl, Ni10NbAl e Ni20NbAl.

Conclusões

A síntese por impregnação úmida foi eficaz, produzindo catalisadores com composições próximas às nominais. A adição de 20 % Nb₂O₅ reduziu a área específica, volume e diâmetro de poros. O DRX confirmou a formação de NiO e sua redução a Ni⁰, sem detecção de Nb₂O₅, indicando alta dispersão. Os perfis de TPR mostraram que a nióbia induz a formação de espécies de NiO de fraca interação com o suporte. Verificou-se pelo TPD-NH3 que a adição de nióbia aumentou a densidade ácida. Nos testes de metanação, o aumento da temperatura até 400 °C elevou a conversão de CO₂ e com baixo impacto na seletividade a CH₄. O catalisador Ni5NbAl apresentou o melhor desempenho em todas as temperaturas. Todos os catalisadores mostraram alta estabilidade durante o período avaliado (30h), com destaque para NiAl e Ni5NbAl, que alcançaram conversões médias de 55-56 % e seletividades a CH4 de 87-88 %. Não houve formação de coque durante os testes de estabilidade.

Agradecimentos

Ao CNPq pelo suporte financeiro concedido. Ao Laboratório de Tecnologias Verdes (GreenTec/EQ/UFRJ) pelas análises de fisissorção de N₂ (BET).

Referências

- 1. E. V. Kondratenko; G. Mul; J. Baltrusaitis; G. O. Larrazábal; J. Pérez-Ramírez, *Energy Environ. Sci.* **2013**, *6*, 3112-3135.
- 2. C. Song, Catalysis Today. 2006, 115, 2-32.
- 3. M. A. A. Aziz; A. A. Jalil; S. Triwahyono; A. Ahmadab, *Green Chem.* **2015**, *17*, 2647-2663.

- 4. W. M. Shen; J. A. Dumesic; C. G. Hill Jr., *Journal of Catalysis*. **1981**, *68*, 152-165.
- 5. Q. Pan; J. Peng; T. Sun; S. Wang; S. Wang, *Catalysis Communications*. **2014**, *45*, 74-78.
- 6. K. Tanabe, Catalysis Today. 2003, 78, 65-77.
- 7. Anderson JR. Structure of metallic catalysts. London: Academic Press; 1975.
- J. P. S. Q. Menezes; A. P. S. Dias; M. A. P. da Silva; M
 M. V. M. Souza, *Biomass and Bioenergy*. 2020, 143, 105882.
- 9. J. F. Gonçalves; M. M. V. M. Souza, *Catalysis Letters*. **2018**, *148*, 1478-1489.
- 10. K. S. W. Sing, Pure and Applied Chemistry. **1985**, *57*, 603-619.
- 11. M. A. Abdel-Rehim; A. C. B. dos Santos; V. L. L. Camorim; A. C. Faro Jr, *Applied Catalysis A: General.* **2006**, *305*, 211-218.
- 12. J. F. Gonçalves; M. M. V. M. Souza, *Current Catalysis*. **2020**, *9*, 80-89.
- 13. M. V. Corrente; R. L. Manfro; M. M.V.M. Souza, *Fuel.* **2024**, *368*, 131561.
- 14. Y. Matsumura; T. Nakamori, Applied Catalysis A: General. 2004, 258, 107-114.
- 15. J. M. Rynkowski; T. Paryjczak; M. Lenik, *Applied Catalysis A: General.* **1993**, *106*, 73-82.
- E. B. Pereira; M. M. Pereira; Y. L. Lam; C. A.C. Perez;
 M. Schmal, *Applied Catalysis A: General.* 2000, 197, 99-106.
- F. M. T. Mendes; C. A. Perez; R. R. Soares; F. B. Noronha; M. Schmal, *Catalysis Today*. **2003**, *78*, 449-459
- 18. A. Baiker; M. Maciejewski, *J. Chem. Soc., Faraday Trans. 1.* **1984**, *80*, 2331-2341.
- R. Rodrigues; N. Isoda; M. Gonçalves; F. C. A. Figueiredo; D. Mandelli; W. A. Carvalho, *Chemical Engineering Journal*. 2012, 198-199, 457-467.
- J. P. S. Q. Menezes; R. L. Manfro; M. M.V.M. Souza, International Journal of Hydrogen Energy. 2018, 43, 15064-15082.
- 21. J. Ashok; S. Pati; P. Hongmanorom; Z. Tianxi; C. Junmei; S. Kawi, *Catalysis Today*. **2020**, *356*, 471-489.