

Eficiência de Catalisadores ZnO-CeO₂/H⁺-ZSM-5 na Conversão Catalítica de CH₄ e CO₂ em Ácido Acético

Gabriel de F. Lopes^{1*}, Alessandra F. Lucrédio¹, Luiz H. Vieira¹, Janaina F. Gomes², José M. Assaf², Elisabete M. Assaf^{1*}

¹Instituto de Química de São Carlos - Universidade de São Paulo (IQSC-USP), São Carlos, Brasil, ²Universidade Federal de São Carlos (UFSCar), São Carlos, Brasil. gabrielfreitaslopes@usp.br, eassaf@iqsc.usp.br.

Resumo/Abstract

RESUMO - Neste estudo, foi conduzida a conversão direta de metano (CH₄) e dióxido de carbono (CO₂) usando catalisadores de ZnO e CeO₂ suportados em H⁺-ZSM-5, os quais foram caracterizados por difração de raios X (XRD) e dessorção a temperatura programada de NH₃ e CO₂ (TPD-NH₃ e TPD-CO₂), assim como os extratos reacionais foram analisados por cromatografia líquida de alta eficiência (HPLC) e ressonância magnética nuclear (RMN) de ¹H. Os perfis de TPD-NH₃ mostraram redistribuição dos sítios ácidos em temperaturas mais elevadas após impregnação, enquanto o TPD-CO₂ evidenciou a introdução de basicidade. Os difratogramas confirmaram a estabilidade da estrutura da zeólita H⁺-ZSM-5, revelando a alta dispersão de ZnO e CeO₂ destacado pelas fases cristalinas não detectáveis. O catalisador 1,9%ZnO-0,38%CeO₂/H⁺-ZSM-5 apresentou 120,03 μmol.g⁻¹.h⁻¹ de ácido acético conforme RMN ¹H e 78 μmol.g⁻¹.h⁻¹ por HPLC, com conversões de 2,86% e 1,86%, respectivamente, evidenciando a sensibilidade distinta das técnicas.

Palavras-chave: Catalisador bimetálico, zeólita, metano, dióxido de carbono, ácido acético.

ABSTRACT - In this study, the direct conversion of methane (CH₄) and carbon dioxide (CO₂) was conducted using ZnO and CeO₂ catalysts supported on H⁺-ZSM-5. These catalysts were characterized by X-ray diffraction (XRD) and temperature-programmed desorption of NH₃ and CO₂ (TPD-NH₃ and TPD-CO₂). The reaction extracts were analyzed by high-performance liquid chromatography (HPLC) and proton nuclear magnetic resonance (¹H NMR). The TPD-NH₃ profiles showed a redistribution of acidic sites at higher temperatures after impregnation, while TPD-CO₂ evidenced the introduction of basicity. The diffractograms confirmed the stability of the H⁺-ZSM-5 zeolite structure, revealing the high dispersion of ZnO and CeO₂, as indicated by the absence of detectable crystalline phases. The catalyst 1.9%ZnO-0.38%CeO₂/H⁺-ZSM-5 exhibited 120.03 μmol.g⁻¹.h⁻¹ of acetic acid according to ¹H NMR and 78 μmol.g⁻¹.h⁻¹ by HPLC, with conversions of 2.86% and 1.86%, respectively, highlighting the distinct sensitivity of the analytical techniques.

Keywords: Bimetallic catalyst, zeolite, methane, carbon dioxide, acetic acid.

Introdução

As mudanças climáticas são fortemente influenciadas pela emissão de gases de efeito estufa que exige ações de mitigação em níveis nacionais e internacionais. O aumento das concentrações de CO₂, impulsiona o aquecimento global. Reduzir esses parâmetros por meio de estratégias sustentáveis é uma necessidade urgente, destacando o aproveitamento do biogás (mistura de CO₂ e CH₄) como matéria-prima para síntese de compostos com maior valor agregado, reduzindo as emissões desses gases (1).

Essa valorização de CO₂ e CH₄ contribui para a mitigação das mudanças climáticas e o desenvolvimento de novos processos químicos. A ativação de CO₂ e CH₄ é desafiadora devido à sua alta estabilidade termodinâmica, exigindo catalisadores com fases ativas adequadas, suportes eficientes e condições otimizadas de reação (2).

A produção de ácido acético pela conversão direta de CH₄ e CO₂ enfrenta o desafio da ativação do metano, que requer

temperaturas elevadas e catalisadores capazes de reduzir as barreiras energéticas envolvidas. Catalisadores de ZnO e CeO₂ suportados em montmorilonita (MMT) favoreceram a adsorção de CH₄ e CO₂, minimizando a competição por sítios ativos, assim como, catalisadores Cu⁰-K⁺-ZSM-5, foram promissores na produção de ácido acético. Além da basicidade, o rendimento em ácido acético depende da acidez de Brønsted e Lewis (3, 4).

O presente trabalho investigou catalisadores à base de ZnO e CeO_2 suportados em H^+ -ZSM-5, visando combinar as propriedades ácidas da zeólita com a basicidade proporcionada pelos óxidos metálicos para promover a ativação eficiente do CO_2 e do CH_4 .

Experimental

Os catalisadores foram sintetizados via impregnação úmida (1a) e caracterizados por TPD de NH_3 e CO_2 (ChemiSorb2750 Micromeritics) e DRX (Rigaku Ultima IV).

A conversão catalítica foi feita em reator batelada (PARR 5500), com 500 mg de catalisador e mistura equimolar de CH₄ e CO₂ (10 bar), procedendo a reação por 5 h a 600 rpm (1b). Os catalisadores foram coletados e extraídos com água Milli-Q (1c) e analisados por RMN ¹H e HPLC (1d).

Figura 1. Procedimentos Experimentais

Resultados e Discussão

Pelos resultados de RMN ¹H e HPLC (Tabela 1), o suporte não apresenta atividade catalítica e o catalisador apresenta formação de ácido acético e suas diferenças estão atribuídas à sensibilidade das técnicas.

Tabela 1. Atividade catalítica dos catalisadores

Catalisador	H ⁺ -ZSM-5		1.9%ZnO-0.38%CeO ₂ H ⁺ -ZSM-5	
Ácido Acético (μmol.g ⁻¹ .h ⁻¹)	RMN ¹ H	HPLC	$RMN^{I}H$	HPLC
	0,00	0,00	120,03	78,00
Conversão* (%)	0,00	0,00	2,86	1,86

^{*}Conversão (%) = (mol de CH₃COOH/mol C_{entrada})*100

Nos perfis de TPD-NH₃, o suporte (2a) apresenta acidez (32,10 µmolNH₃.g⁻¹) e no catalisador (2b), observa-se um aumento dessa acidez (35,93 µmolNH₃.g⁻¹), pois o ZnO atua como ácido de Lewis (5), além de apresentar sítios ácidos médios e fortes, que se tornam mais ativos durante a reação.

Nos perfis de TPD-CO₂ (2c), o suporte não apresenta basicidade (6) e o catalisador apresenta uma basicidade expressiva (349,7 µmolCO₂.g⁻¹) devido o CeO₂.

Nos difratogramas de raios X (2d), H⁺-ZSM-5 apresenta picos conforme indicado pelo padrão JCPDS 44-3, que são preservados no catalisador (7).

Para a amostra modificada, não foi possível identificar os picos de difração do ZnO (JCPDS 36-1451) e CeO₂ (JCPDS 34-0394) por estarem abaixo do limite de detecção do DRX e bem dispersos (8).

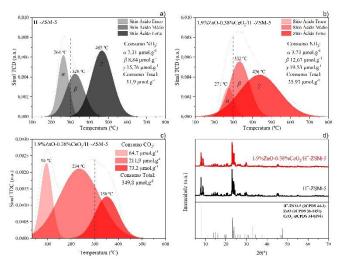


Figura 2. TPD-NH₃(a, b), TPD-CO₂ (c) e DRX (d).

Conclusões

A modificação de zeólitas H^+ -ZSM-5 com óxidos de Zn e Ce, levam à conversão de CH_4 e CO_2 em ácido acético. A combinação entre os sítios ácidos e básicos promove a ativação dos reagentes. As análises complementares (TPD-NH₃, TPD-CO₂ e XRD) confirmaram a estabilidade estrutural e as propriedades ácido-base do catalisador. O uso de técnicas como RMN 1H e HPLC possibilitou a quantificação dos produtos, evidenciando suas limitações.

Agradecimentos

Agradecemos a FAPESP (2024/04540-4 e 2022/10615-1), ao Laboratório de RMN da UFSCar (Prof. Dr. Tiago Venâncio) pelo suporte nas análises de RMN ¹H e ao Grupo de Eletroquímica (Prof^a. Dr^a. Joelma Perez) do IQSC pelo suporte nas análises de HPLC.

Referências

- 1. Rafiee, A., Khalilpour, K. R., Milani, D., Panahi, M. *Jour. of Env. Che. Eng.* **2018**, *6*, 5771–5794.
- 2. Tu, C., Nie, X., Chen, J. G. ACS Catal. 2021, 11, 3384–3401.
- 3. Shavi, R., Ko, J., Cho, A., Han, J. W., Seo, J. G. *App. Catal. B: Env.* **2018**, *229*, 237–248.
- 4. Rabie, A. M., Betiha, M. A., Park, S.-E. *App. Catal. B: Env.* **2017**, *215*, 50–59.
- 5. Aldeen, O. D. A. S.; Mahmoud, M. Z.; Majdi, H. S.; Mutlak, D. A.; Uktamov, K. F.; Kianfar, E. *Adv. in Materials Sci. and Eng.* **2022**, 6165180.
- 6. Liu, R.; Ma, Z., Sears, J. D.; Juneau, M.; Neidig, M. M.; Porosoff, M. D. *Jour. of CO₂ Utiliz.* **2020**, *41*, 101290.
- 7. Frantz, T. S.; Ruiz, W. A.; da Rosa, C. A.; Mortola, V. B. *Microp. and Mesop. Mater.* **2016**, *222*, 209e217.
- 8. Zhao, L.; Zhang, Y.; Bi, S.; Liu, Q. RSC Adv. 2019, 9, 19236.