

Deposição eletroquímica de filme de ZnO dopado com N e sua superior atividade para inativação de microrganismos

Maria Karina Silva³, Caroline Maria V. P. Ramos³, Aline Estafany B. Lima¹, Rejane Maria P. Silva¹, Girlene S. de Figueiredo², Renato A. Antunes⁴, Wellington Alves ⁵, Geraldo Eduardo da Luz Jr¹, Reginaldo da Silva Santos^{1*}

- ¹ PPGQ-GrEEnTec- Departamento de Química, Universidade Estadual do Piauí UESPI, 2231 Rua João Cabral, P.O. Box 381, 64002-150, Teresina PI, Brasil
- ² Departamento de Parasitologia e Microbiologia, Universidade Federal do Piauí UFPI, Campus Ministro Petrônio Portella, Ininga, Teresina, 64049-550, PI, Brasil
- ³ Centro de Ciências Naturais e Humanas, Universidade Federal do ABC UFABC, Santo André, 09210-580 SP, Brasil
- ⁴ Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Universidade Federal do ABC/UFABC, Bangu, Santo André, 09210-580, SP, Brasil
- ⁴ Instituto de Pesquisa Energética e Nuclear IPEN/CNEN, Cidade Universitária, São Paulo, 05508-000, SP, Brasil.

Resumo/Abstract

RESUMO - Este estudo avaliou a inativação fotoeletrocatalítica de *Staphylococcus aureus*, *Escherichia coli* e *Candida albicans* sobre filmes de ZnO dopados com nitrogênio (ZnO:N). Os filmes foram preparados por deposição eletroquímica com diferentes concentrações de dopagem. Os padrões de difração de raios X (XRD) mostraram que os filmes de ZnO puro e ZnO:N exibiram uma estrutura cristalina wurtzita. Imagens de microscopia eletrônica de varredura revelaram filmes com amostras de morfologia de nanobastões de seção transversal hexagonal. A dopagem com nitrogênio causou uma diminuição nos valores da energia da banda proibida (E_{BG}) de 3,17 para 3,12 eV. Estudos fotoeletroquímicos mostraram uma maior densidade de fotocorrente para ZnO:N em comparação com filmes de ZnO, atingindo 60 μA cm⁻² a 0,70 V (vs. Ag/AgCl). Todas as amostras, sob irradiação visível, apresentaram atividade catalítica na inibiram *Staphylococcus aureus*, *Escherichia coli* e *Candida albicans*, no entanto, o filme ZnO:N-40 mostrou resultado superior.

Palavras-chave: Filmes de ZnO dopadas com N, Eletrodeposição, Atividade Antibacteriana, antifúngica, tratamento de águas residuais.

ABSTRACT - This study evaluated the photoelectrocatalytic inactivation of *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans* on nitrogen-doped ZnO (ZnO:N) films. The films were prepared by electrochemical deposition with different doping concentrations. X-ray diffraction (XRD) patterns showed that both pure ZnO and ZnO:N films exhibited a crystalline wurtzite structure. Scanning electron microscopy images revealed films with samples displaying hexagonal cross-section nanorod morphology. Nitrogen doping caused a decrease in the band gap energy (E_{BG}) values from 3.17 to 3.12 eV. Photoelectrochemical studies showed higher photocurrent density for ZnO:N compared to ZnO films, reaching 60 µA cm⁻² at 0.70 V (vs. Ag/AgCl). All samples showed catalytic activity under visible light irradiation and inhibited *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans*, however, the ZnO:N-40 film showed superior results.

Keywords: N-doped ZnO films; electrodeposition; antibacterial activity; antifungal; wastewater treatment.

Introdução

A presença de microrganismos patogênicos em superfícies de materiais representa um desafio à saúde pública (1). Assim, o óxido de zinco (ZnO) é semiconutor do tipo-n, com banda proibida de 3,37 eV, amplamente reconhecido por seu potencial na inativação de virus, bactérias Gram- negativas e Gram-positivas (2,3). A dopagem com o nitrogênio (N), vêm-se destacando por aprimorar a atividade fotocatalítica do ZnO (4).

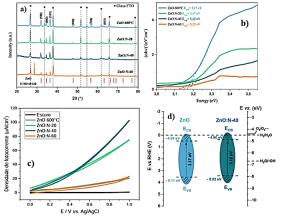
Neste contexto, esta pesquisa investigou a produção de filmes de ZnO e ZnO dopado com nitrogênio (ZnO:N) pelo método de eletrodeposição (5). Os filmes (eletrodos) preparados em nosso estudo foram investigados para a inativação de uma bactéria Gram-positiva (*Staphylococcus*

aureus), bactéria Gram-negativa (*Escherichia coli*) e uma espécie de levedura, fungo unicelular (*Candida albicans*), na ausência de luz e sob irradiação com uma fonte de luz policromática.

Experimental

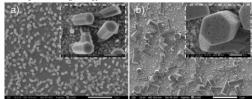
O ZnO foi eletrodepositado sobre vidro-FTO a partir de uma solução contendo $Zn(CH_3COO)_2.2H_2O$ e KCl a -0,9 V por 30 minutos, à 75°C, com fluxo de ar (100 cm³ min¹), e calcinado a 600 °C. Os filmes de ZnO dopados com nitrogênio seguem a mesma metodologia descrita, porém com adição de fluxo de N_2 (20, 40 e 60 cm³ min¹).

Os microrganismos foram cultivados e incubados a 37 °C por 24 horas (bactérias) a 48 horas (fungos). A inativação fotoeletrocatalítica foi realizada em célula com Na₂SO₄ e



500 μL das suspensões microbianas, sob 0,7 V, com e sem irradiação policromática de uma lampada de vapor metálico ajustada para 100mW cm⁻². Amostras foram coletadas nos tempos de 10, 20 e 30 min., plaqueadas e incubadas para contagem de colônias. Controle sem ZnO foi incluído.

Resultados e Discussão


Caracterização estrutural, óptica e eletroquímica.

A Figura 1(a). revela que todos os filmes apresentam padrão de DRX compatível com a estrutura hexagonal wurtzita do ZnO. Em comparação a amostras de ZnO, os filmes de ZnO:N apresentaram deslocamento dos sinais de de difração para maiores valores de 2θ, indicando a incorporação de átomos de N na rede cristalina do ZnO (6).

Figura 1. (a) DRX do ZnO:N (b) Gap dos filmes de ZnO:N (c) Voltamogramas cíclicos do ZnO:N (d) diagrama de níveis de energia de BC e BV para ZnO e ZnO:N.

O comportamento óptico dos filmes de ZnO e ZnO:N e a energia de banda proibida (E_{BG}) foram avaliadas por espectroscopia de UV-Vis, empregando o método de Wood-Tauc (Fig. 1b). O filme de ZnO:N preparado com fluxo de N2 em 40 mL/min (ZnO:N-40) apresentou maior deslocamento para maiores comprimento de onda. A densidade de fotocorrente (Fig.1c) do amostra ZnO:N-40 foi superior indicando que a dopagem com nitrogênio favoreceu a mobilidade eletrônica no eletrodo (7). De acordo com a Fig. 1d, ambas amostras, ZnO e ZnO:N, apresentam potenciais reações de geração de espécies reativas de oxigênio (ROS) são termicamente favoráveis (8). *Caracterização morfológica*

Figura 4. Imagens de FE-SEM a) filmes de ZnO tratados termicamente a 600 °C e b) ZnO:N-40.

A análise por FE-SEM para os filmes ZnO puro e ZnO:N-40, revelou morfologia de nanobastões hexagonais, com redução no comprimento médio (de 0,62 para 0,41 μm) após

a dopagem com nitrogênio, o que favorece o aumento da área de contato com o eletrólito, melhorando o desempenho fotocatalítico.

Avaliação da Atividade Antimicrobiana e antifúngica de Filmes de ZnO e ZnO:N

A atividade catalítica antibacteriana e antifúngica dos filmes de ZnO e ZnO:N foi avaliada contra *S. aureus*, *E. coli* e *C. albicans* sob condições escuras e irradiadas (Tabela 1). Sob luz, as amostras geram ROS, responsáveis pela inativação dos microrganismos. A dopagem com N aumentou a separação de cargas e a formação de defeitos, potencializando a geração de ROS. Neste estudo, o filme ZnO:N-40 apresentou a melhor atividade biocida.

Tabela 1. Atividade bactericida e antifúngica dos filmes de ZnO e ZnO:N-40. (-) total inativação (*)incontável

Amostra (condição)	Número de colônias de microrganismos por tempo de inativação (min)								
	S. aureus			E. coli			C. albicans		
	10 min	20 min	30 min	10 min	20 min	30 min	10 min	20 min	30 min
Ação da luz	*	*	*	*	*	*	*	*	*
ZnO (escuro)	202	131	178	*	*	*	442	388	400
ZnO (Irradiado)	26	46	50	314	362	252	286	286	120
ZnO:N-40 (escuro)	15	11	11	7	6	10	57	27	11
ZnO:N-40 (irradiado)	-	-	-	-	-	-	-	-	-

Conclusões

Os Filmes de ZnO e ZnO:N com estrutura wurtzita foram obtidos por eletrodeposição, sendo que a dopagem com nitrogênio alterou suas propriedades ópticas e aumentou a densidade de fotocorrente. A amostra ZnO:N-40 apresentou os melhores resultados na geração de ROS, eficazes na inativação de *S. aureus, E. coli e C. albicans*, principalmente sob irradiação.

Agradecimentos

Agradecemos às agências de fomento FAPEPI, CAPES e CNPq pelas bolsas concedidas aos participantes da pesquisa e pelo apoio financeiro adicional.

Referências

- 1. P. N. Catalano. et al. Microporous and Mesoporous Materials. 2016, 236, 158-166.
- J. Applerot. et al. Adv. Funct. Mater. 2009. 19, 842-852.
- 3. A. Pasquet. et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 457, 263-274.
- 4. A. Ramos-Corona. et al. Advanced Powder Technology. 2022. 33, 103829.
- 5. M. K. Silva. et al. International Journal of Environmental Science and Technology. 2025. 1-16.
- 6. S. Mondal. et al. Heliyon. 2023. 9.
- 7. R. Y. Reis. et al. Surfaces and Interfaces. **2020.** 21, 100675.
- 8. J. Wei. et al. Environmental pollution. **2009.** 157, 1619-1625.