

Propriedades Estruturais, Estabilidade Térmica e Capacidade de Adsorção de Esferas Magnéticas contendo Ferro/Biocarbono

Venicius Henrique S. Lima¹, Rayssa Layza L. Xavier¹, Felipe S. Gomes¹, Ana Clarice P. Farias¹, João Felipe S. Barros², Ronaldo T. Sousa², Antoninho Valentini² e Regina Claudia R. Santos¹,*

¹Laboratório de Química, Universidade Estadual do Ceará (UECE), Campus FACEDI, Itapipoca-CE, 62.500-000, Brasil.

Resumo/Abstract

RESUMO – Esferas de ferro/biocarbono (Fe/Q) foram produzidas, usando quitosana como fonte natural de carbono, para adsorção do azul de metileno. Análises de TGA/DTA e DRX mostraram que a funcionalização da superfície e a adição de ferro provocaram mudanças nas propriedades estruturais e estabilidade térmica dos biocarbonos, resultando em melhor capacidade de adsorção.

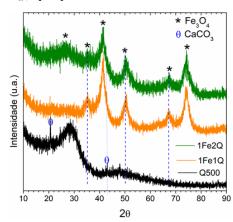
Palavras-chave: Esferas, Ferro/biocarbono, Adsorção

ABSTRACT - Iron/biocarbon (Fe/Q) spheres were produced using chitosan as a natural carbon source for the adsorption of methylene blue. TGA/DTA and XRD analysis revealed that surface functionalization and iron incorporation induced changes in the structural properties and thermal stability of the biocarbon, enhancing the adsorption capacity. *Keywords: Spheres, Fe/biocarbon, Adsorption*

Introdução

A biomassa tem se destacado como uma fonte sustentável para a produção de energia e materiais carbonáceos (1). O biocarbono é um co-produto da biomassa de elevado valor agregado e com aplicações em catálise, sensores e adsorção (1,2). As propriedades estruturais, químicas e estabilidade térmica dos biocarbonos dependem do método de preparação, condições de tratamento térmico e fonte de carbono (3). A quitosana destaca-se como uma fonte natural, para a produção de materiais carbonáceos porosos por meio da pirólise. Além disso, a funcionalização química do biocarbono com grupos funcionais e/ou metais de transição melhora suas propriedades físico-químicas e eletrônicas. Neste trabalho, são reportadas as propriedades térmicas, estruturais e a capacidade de adsorção (azul de metileno) de esferas magnéticas de ferro/biocarbono (Fe/Q) sintetizadas a partir de quitosana como fonte de carbono.

Experimental


Síntese, caracterização e avaliação da capacidade de adsorção das esferas de ferro/biocarbono (Fe/Q).

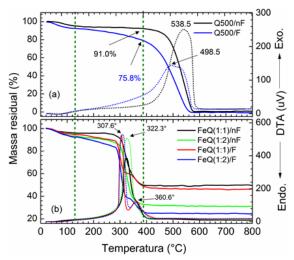
Esferas híbridas de Fe/Q foram sintetizadas utilizando o biopolímero quitosana (Q), conforme método descrito na literatura (4). Brevemente, a uma solução de quitosana dispersa em ácido acético (3%v/v) foi adicionado solução de nitrato de ferro. A mistura resultante foi gotejada em uma solução de hidróxido de amônio, levando a precipitação de esferas híbridas (hidróxido de ferro e quitosana). Após

secas, as esferas foram submetidas a pirólise a 500°C por 1h (N₂) para conversão nas amostras de Fe/Q. Foram avaliadas duas razões molares ferro/quitosana (1:1 e 1:2), bem como a funcionalização da superfície por tratamento com HNO₃. Os materiais foram caracterizados por meio de análises termogravimétrica e termodiferencial (TGA/DTA), difração de raios-X (DRX) e sua performance avaliada na cinética de adsorção do azul de metileno.

Resultados e Discussão

Propriedades estruturais e estabilidade térmica Os difratogramas do biocarbono puro (Q500) e contendo ferro (Fe/Q), após pirólise a 500°C são exibidos na Fig.1.

Figura 1. Difração de raios-X das amostras após tratamento térmico a 500°C em N₂. Amostras não-funcionalizadas.

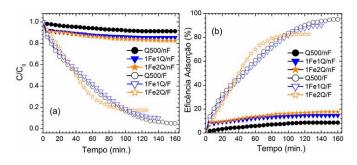

²Langmuir – Laboratório de Adsorção e Catálise, Universidade Federal do Ceará, Fortaleza -CE, 60.455-760, Brasil.

^{*}E-mail: regina.claudia@uece.br

O DRX do biocarbono mostra um largo pico a 2θ=28.3°, característico de carbono amorfo com estrutura desordenada. Contudo, fracas linhas de difração a 2θ=20.6 e 48.1°, indica a presença da fase de CaCO₃ (ICSD 18127), devido a impureza de cálcio na quitosana. A introdução de ferro, resulta na formação da fase magnetita (Fe₃O₄ ICSD 36314) em ambas amostras ferro/biocarbono (Fe/Q). Contudo, a amostra com maior teor de Fe ou, de menor razão molar 1Fe/1Q apresenta picos mais intensos.

A análise TGA/DTA das esferas de biocarbono antes (Q500/nF) e após funcionalização (Q500/F) revelou dois principais eventos de perda de massa (Fig. 2a). O primeiro a temperaturas abaixo de 150 °C, está associado a eliminação de água físicamente adsorvida. O segundo, mais pronunciado (250 - 600°C) está relacionado ao processo exotérmico de oxidação de estruturas carbonáceas e grupos funcionais oxigenados incorporados à estrutura do biocarbono (5). O acelerado processo de combustão do carbono na amostra Q500/F, com menor teor de massa residual (75,8%), confirma a funcionalização da superfície do biocarbono e menor estabilidade térmica comparado a não-funcionalizada (Q500/nF, 91,0%).

Figura 2. Curvas TGA/DTA: (a) Biocarbono (Q500) e (b) (Fe/Q). Não-funcionalizadas (nF) e Funcionalizadas (F).


Como mostrado na Fig. 2b, a incorporação de ferro catalisa a oxidação do biocarbono, deslocando os eventos de perda de massa para menor temperatura (300-400°C), sugerindo menor estabilidade térmica das amostras Fe/Q. Após funcionalização as curvas TGA/DTA evidenciam perda de massa em torno de 360 °C, atribuídas à oxidação de espécies de ferro mais expostas na superfície. A massa residual final está relacionada à formação de óxidos de ferro, cuja proporção depende do conteúdo de ferro nas esferas.

Cinética de adsorção do azul de metileno

Experimentos de adsorção do azul de metileno foram realizados para avaliar o efeito da funcionalização com ferro

e tratamento ácido na capacidade de adsorção das esferas de biocarbono, conforme mostrado na Fig. 3 (a e b). As amostras funcionalizadas (Q500-F e Fe/Q-F) mostram cinética de adsorção mais pronunciada e maior eficiência de remoção em comparação as amostras não funcionalizadas. Esse resultado, pode ser atribuído à introdução de grupos funcionais oxigenados (hidroxilas, carboxilas) durante o tratamento ácido, aumentando a polaridade e a afinidade da superfície dos adsorventes pelo azul de metileno. As amostras contendo ferrro (Fe/Q-F), apresentaram maior capacidade de adsorção atingindo o equilíbrio em menor tempo (100min).

Figura 3. (a) cinética de adsorção e (b) eficiência remoção do azul de metileno (AM) usando esferas de biocarbono (Q500/ nF e F) e ferro/biocarbono (Fe/Q). AM (6mg/L), 30mg esferas, T=25°C.

Esse resultado evidencia o efeito sinérgico entre a funcionalização da superfície e os sítios ativos do ferro, o qual deve favorecer interações eletrostáticas e complexação com molécula do corante.

Conclusões

A quitosana mostra-se uma promissora fonte natural para síntese de esferas de biocarbono e ferro/biocarbono com boa estabilidade térmica. A funcionalização reduz a estabilidade térmica e a introdução do ferro catalisa a oxidação do biocarbono. As esferas de Fe/Q apresentaram melhor capacidade para adsorção do azul de metileno.

Agradecimentos

Os autores agradecem a FUNCAP, CNPq e CAPES pelas bolsas e ao Laboratório de Raios-X/UFC pelas análises.

Referências

- L. Wang, R. A. Khalil, J. Bakken, Fuel 2024, 370, 131667
- 2. M. Gęca, M. Wisniewska, P. Nowicki, *Adv. in Coll. and Interf. Science* **2022**, 305, 102687.
- 3. S. Debevc, H.Weldekidan, M. R. Snowdon, *Carbon Trends* **2022**, 9, 100214.
- 4. R. C. R. Santos, E. Longhinotti, A. Valentini, *Mat. Chem. and Phys.* **2015**, 160, 119-130.
- T. P. Braga, E. Longhinotti, A. Valentini, *Appl. Catal. A: Gen.* 2009, 362, 139–146.