

Síntese verde de nanopartículas de magnetita com extrato de coco (Cocos *nucifera*) aplicada em descarboxilação eletroquímica

Gabriel J. S. Silva^{1*}, Marcos F. A. Maciel¹, Felipe F. Barbosa¹, Ellen K. L. de Morais¹, Jhulia G. L. Pereira, Ivo M. T. Bezerra², Marco A. M. Torres², Lívia N. Cavalcanti¹, Amanda D. Gondim¹

- ¹Núcleo de Pesquisa Djalma Ribeiro (NUPPRAR), Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN, 59.078-970
- ² Grupo de Nanoestruturas Magnéticas e Semicondutoras (GNMS), Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN, 59,078-970.

Resumo/Abstract

RESUMO -

As nanopartículas de magnetita (Fe₃O₄) foram sintetizadas utilizando extrato de fibra de coco (Cocos *nucifera*), como alternativa sustentável à síntese convencional, substituindo o uso de nitratos e outros reagentes tóxicos como redutores dos íons Fe³⁺. As amostras foram obtidas sob diferentes condições, sendo a MNT 01 (sem aquecimento, 5% v/v de extrato) a que apresentou maior diâmetro do cristalito, melhor estequiometria e menor incidência de oxidação, evidenciada a partir das análises de difração de raios-X (DRX) e espectroscopia Mössbauer. Na aplicação eletroquímica, a MNT 01 apresentou seletividade de 73,9% para hidrocarbonetos na descarboxilação do ácido láurico, superando tanto a reação sem catalisador (53,7%) quanto a amostra sintetizada sem extrato (61,7%). As amostras com magnetita também alcançaram uma conversão média de 71,2%, indicando uma compatibilidade promissora dessas nanopartículas com a reação.

Palavras-chave: Magnetita, Síntese verde, Descarboxilação.

ABSTRACT -

Magnetite nanoparticles (Fe₃O₄) were synthesized using coconut fiber extract (Cocos nucifera) as a sustainable alternative to conventional synthesis, replacing the use of nitrates and other toxic reagents as reducers of Fe³⁺ ions. The samples were obtained under different conditions, with MNT 01 (no heating, 5% v/v extract) showing the largest crystallite diameter, better stoichiometry, and lower oxidation incidence, as evidenced by X-ray diffraction (XRD) and Mössbauer spectroscopy analyses. In the electrochemical application, MNT 01 exhibited a selectivity of 64.2% for hydrocarbons in the decarboxylation of lauric acid, outperforming both the reaction without a catalyst (53.7%) and the sample synthesized without extract (61.7%). The magnetite samples also achieved an average conversion of 71.2%, indicating a promising compatibility of these nanoparticles with the reaction.

Keywords: Magnetite, Green Synthesis, Decarboxylation.

Introdução

A magnetita (Fe₃O₄) é um óxido de ferro com ampla aplicação em processos catalíticos e eletroquímicos, sendo valorizada por suas propriedades físico-químicas, como boa condutividade, estabilidade térmica e comportamento magnético, que permite sua reutilização em vários ciclos reacionais [1]. Um dos principais diferenciais da magnetita está em sua estrutura cristalina do tipo espinélio inverso, na qual os íons Fe²⁺ e Fe³⁺ ocupam simultaneamente os sítios octaédricos da rede, enquanto os sítios tetraédricos são preenchidos por Fe³⁺. Essa organização estrutural confere ao material uma maior densidade de sítios ativos distribuídos em diferentes estados de oxidação, o que permite uma maior interação com os reagentes [2-3]. A

presença simultânea de diferentes valências de ferro em sua superfície contribui para a adsorção e ativação seletiva de espécies químicas, ampliando sua aplicabilidade em diversos sistemas catalíticos [4]. Apesar de todas essas vantagens, sua rota mais convencional de síntese envolve a utilização de reagentes tóxicos — como hidrazina [5] e hidróxido de amônio [6] — para reduzir os íons ferro durante a etapa de formação das nanopartículas, o que representa um problema diante da crescente demanda por tecnologias ambientalmente mais sustentáveis.

Nesse cenário, a síntese verde se apresenta como uma alternativa promissora, ao empregar compostos naturais presentes em resíduos de biomassa para substituir reagentes sintéticos [7]. Extratos vegetais, como o da fibra de coco (Cocos *nucifera*), destacam-se por conter grupos

funcionais — como fenóis, álcoois e carboxilas — capazes de reduzir íons metálicos. Além de abundante e de baixo custo, esse subproduto agroindustrial oferece uma rota mais segura e ambientalmente adequada para a produção de nanomateriais.

Paralelamente, a descarboxilação eletroquímica de ácidos graxos tem emergido nos últimos anos como uma rota promissora para a conversão de compostos orgânicos em hidrocarbonetos, com potencial aplicação na produção de biocombustíveis e intermediários químicos [8]. Essa reação, que ocorre em meio eletrolítico com aplicação de corrente elétrica, pode ser aprimorada pela presença de catalisadores que promovam maior seletividade e conversão, o que tem levado ao aumento de estudos sobre a incorporação de óxidos metálicos nesse processo [9]. Nesse sentido, o trabalho propõe uma abordagem inovadora ao unir a síntese de nanopartículas de magnetita por rota verde, utilizando extrato de fibra de coco, com sua aplicação na descarboxilação química do ácido láurico para obtenção de hidrocarbonetos.

Experimental

Síntese das nanopartículas de magnetita

A síntese de nanopartículas de magnetita foi realizada utilizando duas fontes de ferro: sulfato ferroso II (FeSO₄·7H₂O) como fonte de íons Fe²⁺ e cloreto férrico III (FeCl₃·6H₂O) como fonte de íons Fe³⁺. Foram conduzidos seis experimentos distintos, com variações nas condições de temperatura e na porcentagem do extrato de fibra de coco utilizado, com o objetivo de avaliar o impacto desses fatores nas propriedades finais das nanopartículas, conforme indicado na Tabela 1 a seguir

Tabela 1. Condições de síntese utilizadas para formação das nanopartículas de magnetita

Ensaio	Percentual de extrato (% v/v)	Temperatura (°C)	
MNT 01	5	25	
MNT CTL	0	25	

O procedimento teve início com a preparação da solução aquosa, que passou por uma etapa de desgaseificação utilizando gás nitrogênio. Para a amostra MNT 01, o extrato de coco foi adicionado no início do processo, visando garantir uma maior homogeneidade com o sistema. Posteriormente, duas soluções contendo diferentes fontes de Fe²⁺ e Fe³⁺ foram adicionadas em uma proporção de 1:1,5, respectivamente, e a mistura foi

agitada durante 1h. Em seguida, foi introduzida uma solução de NaOH [1M], o que resultou em uma mudança imediata de coloração, passando de laranja para preta, indicando a formação do material de interesse. Após o término da reação, a mistura foi resfriada, e o sólido formado foi separado por centrifugação. O precipitado foi lavado várias vezes para remoção de resíduos e ajuste do pH. Por fim, o material foi posto para secar sob temperatura controlada de 70 °C durante 12 horas.

Difração de raios-X (DRX)

As amostras de magnetita foram caracterizadas estruturalmente por difração de raios-X (DRX). As medições empregaram radiação CuK α (λ = 1,54 Å), filtrada por níquel, com o aparelho operando a 30 kV e 10 mA. As análises foram conduzidas na faixa angular de 20 entre 20° e 70°, adotando-se uma fenda divergente de 0,6 mm, fenda central de 1 mm, passo de 0,02° e tempo de contagem de 0,3 segundos por ponto. Foi realizado também o refinamento de Rietveld, utilizando o *software* GSAS II 2012, a fim de calcular o diâmetro médio dos cristalitos a partir da equação de Scherrer.

Espectroscopia Mössbauer

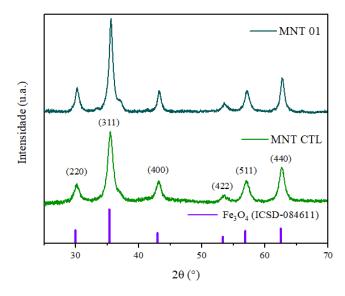
A espectroscopia Mössbauer das amostras de magnetita foi conduzida em um espectrômetro Wissel, utilizando uma fonte de Co-57 com atividade de 50 mCi. Os deslocamentos isoméricos foram calibrados em relação ao ferro metálico (α-Fe). Medidas adicionais foram realizadas a 150 K em amostras selecionadas, visando observar os efeitos da transição de Verwey — fenômeno característico da magnetita que altera sua estrutura eletrônica e propriedades magnéticas — e, assim, permitir uma caracterização mais aprofundada. A análise dos espectros foi realizada com o *software* Normos95.

Eletrodescarboxilação do ácido láurico

A reação de eletrodescarboxilação foi realizada em uma célula eletroquímica de compartimento único, sob agitação constante, utilizando eletrodos de carbono como ânodo e cátodo. A solução eletrolítica foi composta por ácido láurico (0,8 mmol) e hidróxido de potássio, dissolvidos em metanol. As amostras de magnetita (0,8 mmol) foram dispersas na solução reacional. A descarboxilação eletroquímica foi conduzida sob corrente de 10mA e potencial de 10v, aplicada por meio de um potenciostato durante 3 horas a temperatura ambiente. Após a reação, os produtos foram extraídos com n-hexano e analisados por cromatografia gasosa acoplada à espectrometria de massas (GC-MS) para avaliar a

conversão e a seletividade para hidrocarbonetos. A Tabela 2 abaixo apresenta a organização sistemática das reações **Tabela 2**. Condições reacionais utilizadas na descarboxilação do ácido láurico.

Ensaio	Matéria- prima	Catalisador	Solvente	Tempo (h)
MNT LAU 01	Ácido láurico comercial	láurico (com extrato		3
MNT LAU CTL	Ácido láurico comercial	láurico (sem		3
MNT BRANCO Acido láurico comercial		Sem catalisador	Metanol	3


Resultados e Discussão

Difração de raios-x (DRX)

O resultado dos difratogramas de raios-X é apresentado pela Figura 1 abaixo. Nela, é possível observar um padrão característico da fase cristalina da magnetita (Fe₃O₄), com reflexões bem definidas nos planos (220), (311), (400), (422), (511) e (440), típicos da estrutura do tipo espinélio cúbico invertido. Esses planos correspondem a regiões de máxima densidade atômica no reticulado, o que explica a intensidade acentuada, especialmente do pico (311), frequentemente o mais intenso nesse tipo de estrutura.

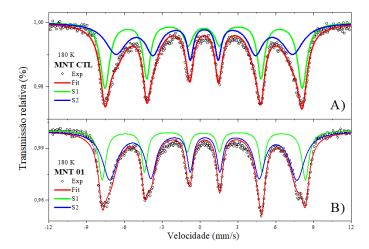
A simetria bem definida dos picos e sua correspondência precisa com o padrão cristalográfico ICSD-084611 indicam que as amostras apresentam elevada cristalinidade e se alinham com a estrutura esperada da magnetita (Fe₃O₄). No entanto, embora o padrão de difração seja compatível com esse óxido de ferro, a técnica de DRX isoladamente não permite a identificação total da fase, uma vez que a maghemita (γ-Fe₂O₃), outro óxido com estrutura semelhante, apresenta reflexões muito próximas às da magnetita [10]. Portanto, para distinguir com segurança entre essas fases, especialmente em escala nanométrica, é necessário complementar a análise com outras técnicas, como a espectroscopia Mössbauer.

Figura 1. Difratograma das amostras MNT 01, MNT CTL e o padrão ICSD da magnetita.

A Tabela 2 apresenta o diâmetro médio dos cristalitos das amostras, calculados a partir da equação de Scherrer. Nela, observa-se que a amostra MNT 01, sintetizada com extrato de coco, apresentou diâmetro médio de cristalito de 11,4 nm, enquanto a MNT CTL, obtida sem o extrato, teve 7,27 nm. Essa diferença representa um aumento de aproximadamente 56,8% no tamanho dos cristalitos, indicando que a presença do extrato vegetal favoreceu o crescimento das nanopartículas durante a síntese. Esse crescimento controlado pode contribuir para uma melhor dispersão das partículas em meios coloidais e favorecer aplicações em que a agregação excessiva compromete o desempenho do material.

Amostra	Diâmetro médio do cristalito (nm)
MNT 01	11.04
MNT CTL	7.27

Tabela 2. Tamanhos médios dos cristalitos das amostras de magnetita estimados por meio da equação de Scherrer.


Espectroscopia Mössbauer

Os espectros Mössbauer são apresentados pela Figura 2 e complementados pela Tabela 3. As análises a 180 K das amostras MNT CTL e MNT 01 mostram dois sextetos (S1 e S2), atribuídos ao Fe³⁺ em sítios tetraédricos

e ao Fe²⁺/Fe³⁺ em sítios octaédricos, respectivamente [11]. A razão de áreas S2/S1 da MNT 01 (~2:1) indica estequiometria próxima da magnetita 'bulk', enquanto a MNT CTL (~1:1) sugere oxidação parcial do Fe²⁺, com formação de defeitos na estrutura [12-13]. Essa transição é comum em função da exposição das amostras à atmosfera oxidante após a síntese [14]. Além disso, a MNT 01 apresenta campo hiperfino médio mais elevado em S2 (46,0 T) e valores de isomer shift (0,39 e 0,44 mm/s) compatíveis com magnetita estequiométrica, indicando maior estabilidade eletrônica e integridade estrutural [15-16].

Os valores de quadrupole splitting (QS), por sua vez, sugerem maior simetria local na MNT 01 (QS \approx –0,01 mm/s) em comparação à MNT CTL (QS \approx 0,01 mm/s), reforçando a ideia de uma estrutura menos distorcida e mais próxima da magnetita ideal [17-18].

Figura 2. Espectroscopia Mössbauer realizada nas amostras MNT CTL (a) e MNT 01 (b) a 180 K.

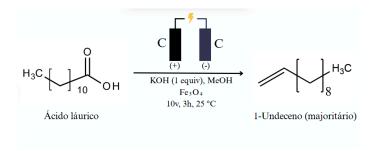

	Sexteto 1 (Fe ³⁺)			Sexteto 2 (Fe ^{2+/3+})			
Amostra	IS	QS	B_{HF}	Área (%)	IS	QS	B_{HF}
MNT 01	0,39	0,04	49, 9	33	0,44	-0,01	46
MNT CTL	0,40	-0,02	48, 5	49	0,43	0,01	43,5

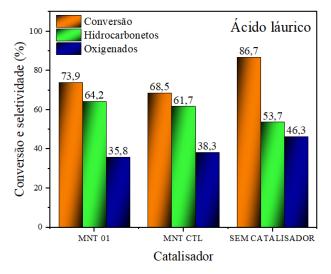
Tabela 3. Parâmetros magnéticos obtidos a partir da espectroscopia Mössbauer.

A reação ilustrada na Figura 3 evidencia a viabilidade da eletrodescarboxilação do ácido láurico empregando eletrodos de carbono em meio metanólico alcalino (KOH) e catalisador heterogêneo à base de

nanopartículas de Fe₃O₄. Nas condições utilizadas (25 °C, 10 V, 3 h), obteve-se predominantemente o composto 1-undeceno — um hidrocarboneto linear com potencial aplicação na produção de biocombustíveis — como produto majoritário das três reações (MNT LAU 01, MNT LAU CTL e MNT BRANCO), evidenciando a eficiência do sistema na conversão do ácido graxo por meio da remoção eletrocatalítica do grupo carboxila (-COOH).

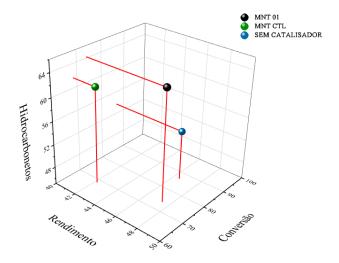
Figura 3. Condições reacionais para eletrodescarboxilação do ácido láurico utilizando magnetita como catalisador

A Figura 4 apresenta os dados de conversão do ácido láurico e a seletividade para hidrocarbonetos e compostos oxigenados sob diferentes condições catalíticas durante a eletrodescarboxilação. A ausência de catalisador levou à maior conversão do ácido láurico (86,7%), no entanto, acompanhada de uma menor seletividade para hidrocarbonetos (53,7%) e maior presença de compostos oxigenados residuais (46,3%).


Por outro lado, o uso de nanopartículas de magnetita, tanto na amostra MNT 01 quanto na MNT CTL, promoveu uma mudança no perfil dos produtos. Embora a conversão tenha sido inferior à condição sem catalisador (73,9% e 68,5%, respectivamente), observou-se aumento na seletividade para hidrocarbonetos (64,2% e 61,7%) e redução na formação de produtos oxigenados (35,8% e 38,3%).

Esses resultados sugerem que a presença da magnetita pode desempenhar papel ativo na remoção do grupo carboxílico, promovendo a formação preferencial de alcenos (olefinas). Neste caso, o catalisador (Fe₃O₄) atua como mediador na transferência eletrônica durante a etapa anódica, favorecendo vias de descarboxilação, com menor retenção de grupos oxigenados.

Os valores de conversão, superiores a 70% em todas as reações, sugerem que eventuais ajustes de parâmetros — como corrente, potencial, tempo de reação e solvente — podem abrir margem para o aprimoramento do sistema,



melhorando ainda mais a conversão e a seletividade para hidrocarbonetos.

Figura 4. Conversão e seletividade da reação de descarboxilação eletroquímica do ácido láurico

Um gráfico tridimensional, apresentado pela Figura 5, sumariza o desempenho da reação de descarboxilação do ácido láurico na presença e na ausência do catalisador (nanopartículas de magnetita), com ênfase em três parâmetros: conversão (%), rendimento (%) e produção de hidrocarbonetos.

Figura 5. Gráfico tridimensional comparando a conversão (%), o rendimento (%) e a produção de hidrocarbonetos

Conclusões

Os resultados deste estudo destacam o excelente desempenho catalítico da magnetita (Fe_3O_4) na

descarboxilação eletroquímica do ácido láurico. A amostra MNT 01, sintetizada por uma rota verde utilizando extrato de fibra de coco, apresentou a maior seletividade (64,2%) para hidrocarbonetos, superando a reação sem catalisador (53,7%) e a amostra de controle, MNT CTL (61,7%).

Esses resultados evidenciam o potencial da magnetita verde como catalisador em processos eletroquímicos, especialmente na conversão de ácidos graxos em hidrocarbonetos via descarboxilação. A continuidade dos estudos, com foco no aprimoramento das condições reacionais e da síntese do catalisador, pode ampliar ainda mais sua eficiência, favorecendo a produção de biocombustíveis e compostos de alto valor agregado a partir de fontes renováveis.

Agradecimentos

NUPPRAR/Labprobio; Instituto de Química (IQ-UFRN), Programa de Pós-Graduação em Química (PPGQ-UFRN), Petrogalp (GALP S.A) e FUNPEC.

Referências

- Girardet, T., Venturini, P., Martinez, H., Dupin, J.-C., Cleymand, F., & Fleutot, S. (2022). Spinel magnetic iron oxide nanoparticles: Properties, synthesis and washing methods. Applied Sciences (Basel, Switzerland), 12(16), 8127. https://doi.org/10.3390/app12168127
- Lak, A., Disch, S., & Bender, P. (2021). Embracing defects and disorder in magnetic nanoparticles. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 8(7). https://doi.org/10.1002/advs.202002682Para livro com editor: J. G. Buchanan; H. Z. Sable in *Selective Organic Transformations*, B. S. Thyagarajan, Ed.; Wiley-Interscience, New York, 1972; Vol. 2, 1-95.
- 3. Sodipo, B. K., Noqta, O. A., Aziz, A. A., Katsikini, M., Pinakidou, F., & Paloura, E. C. (2023). Influence of capping agents on fraction of Fe atoms occupying octahedral site and magnetic property of magnetite (Fe3O4) nanoparticles by one-pot co-precipitation method. Journal of Alloys and Compounds, 938(168558), 168558.
 - https://doi.org/10.1016/j.jallcom.2022.168558
- 4. Ma, G., Tian, J., & Shen, Y. (2024). Structure and magnetic properties of (Ni,Fe)Fe2O4 derived from nickel slag via molten oxidation. Materials Today. Communications, 40(109537), 109537. https://doi.org/10.1016/j.mtcomm.2024.109537
- 5. Adhikari, M., Echeverria, E., Risica, G., McIlroy, D. N., Nippe, M., & Vasquez, Y. (2020). Synthesis of magnetite nanorods from the reduction of iron

- oxy-hydroxide with hydrazine. ACS Omega, 5(35), 22440–22448.
- https://doi.org/10.1021/acsomega.0c02928
- 6. Ramadan, I., Moustafa, M., & Nassar, M. (2022). Facile controllable synthesis of magnetite nanoparticles via a co-precipitation approach. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.116869.5284
- 7. Huston, M., DeBella, M., DiBella, M., & Gupta, A. (2021). Green synthesis of nanomaterials. Nanomaterials (Basel, Switzerland), 11(8), 2130. https://doi.org/10.3390/nano11082130
- 8. Schäfer, H. J. (2012). Electrochemical conversion of fatty acids. European Journal of Lipid Science and Technology: EJLST, 114(1), 2–9. https://doi.org/10.1002/ejlt.201100045
- 9. Bian, J., Wang, Y., Zhang, Q., Fang, X., Feng, L., & Li, C. (2017). Fatty acid decarboxylation reaction kinetics and pathway of co-conversion with amino acid on supported iron oxide catalysts. RSC Advances, 7(75), 47279–47287. https://doi.org/10.1039/c7ra08507a
- 10. Schwaminger, S., Syhr, C., & Berensmeier, S. (2020). Controlled synthesis of magnetic iron oxide nanoparticles: Magnetite or maghemite? Crystals, 10(3), 214. https://doi.org/10.3390/cryst10030214
- 11. Al-Mamari, R. T., Widatallah, H. M., Elzain, M. E., Gismelseed, A. M., Al-Rawas, A. D., Al-Harthi, S. H., Souier, T. M., & Al-Abri, M. (2022). Structural, Mössbauer, and Optical studies of mechano-synthesized Ru3+-doped LaFeO3 nanoparticles. Hyperfine Interactions, 243(1). https://doi.org/10.1007/s10751-021-01787-7
- Hah, H. Y., Gray, S., Johnson, C. E., Johnson, J. A., Kolesnichenko, V., Kucheryavy, P., & Goloverda, G. (2021). Mössbauer spectroscopy of superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 539(168382), 168382. https://doi.org/10.1016/j.jmmm.2021.168382
- Castellanos-Rubio, I., Arriortua, O., Iglesias-Rojas, D., Barón, A., Rodrigo, I., Marcano, L., Garitaonandia, J. S., Orue, I., Fdez-Gubieda, M. L., & Insausti, M. (2021). A milestone in the chemical synthesis of Fe3O4 nanoparticles: Unreported bulklike properties lead to a remarkable magnetic hyperthermia. Chemistry of Materials: A Publication of the American Chemical Society, 33(22), 8693–8704. https://doi.org/10.1021/acs.chemmater.1c02654
- Ohenhen, L. O., Feinberg, J. M., Slater, L. D., Ntarlagiannis, D., Cozzarelli, I. M., Rios-Sanchez, M., Isaacson, C. W., Stricker, A., & Atekwana, E. A. (2022). Microbially induced anaerobic oxidation of magnetite to maghemite in a hydrocarbon-contaminated aquifer. Journal of Geophysical Research. Biogeosciences, 127(4). https://doi.org/10.1029/2021jg006560

- Campione, M., Murri, M., Cerantola, V., Bessas, D., Rosenthal, A., Chumakov, A., Scambelluri, M., & Malaspina, N. (2022). Magnetic ordering of magnetite inclusions in Olivine at mantle depths in subduction zones. ACS Earth & Space Chemistry, 6(12), 2755–2759.
 - https://doi.org/10.1021/acsearthspacechem.2c00190
- Vyhnáleková, S., Miglierini, M. B., Cesnek, M., Štefánik, M., & Matúš, P. (2024). Microbial-induced structural changes in non-stoichiometric magnetite via radioanalytical methods. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-024-09863-2
- 17. Osipov, B. D., & Grabois, M. N. (1985). Magnetic hyperfine structure and centrifugal distortion in quadrupole spectra of 12CH3I and 13CH3I. Journal of Molecular Spectroscopy, 111(2), 344–351. https://doi.org/10.1016/0022-2852(85)90010-4
- 18. Kołodziej, T., Biało, I., Tabiś, W., Zubko, M., Żukrowski, J., Łątka, K., Lorenzo, J. E., Mazzoli, C., Kąkol, Z., Kozłowski, A., Tarnawski, Z., Wilke, E., Babik, P., Chlan, V., Řezníček, R., Štěpánková, H., Novák, P., Joly, Y., Niewolski, J., & Honig, J. M. (2020). Magnetic field induced structural changes in magnetite observed by resonant x-ray diffraction and Mössbauer spectroscopy. Physical Review. B, 102(7). https://doi.org/10.1103/physrevb.102.075126