

Efeito de promotores de terras raras em aerogéis de Ni-Al₂O₃ na reforma seca de biogás

Ramon V. S. Aquino^{1,*}, Maíra D. Mallmann¹, Letícia H. Cruz¹, Fernanda C. Fraga¹, Bruno F. Oechsler¹, Regina F. P. M. Moreira¹

¹Universidade Federal de Santa Catarina, Departamento de Engenharia Química e de Alimentos, Rua do Biotério Central S/N, Florianópolis, Brasil. *ramon.aquino@posgrad.ufsc.br

RESUMO – Neste trabalho, catalisadores em aerogel de Ni-Al₂O₃ contendo terras raras (La, Nd) foram aplicados na reforma seca de biogás para a produção de gás de síntese. Os catalisadores foram sintetizados pelo método sol-gel, secos com CO₂ supercrítico e calcinados a 700°C. O efeito das terras raras como promotores foi avaliado em testes de reforma seca de um biogás modelo com proporção de CH₄/CO₂ de 1:1. A partir do DRX, foi possível observar fases cristalinas referentes a γ-Al₂O₃ e NiAl₂O₄. A área específica foi superior em LaNiAl-A e NdNiAl-A comparado a NiAl-A. Pelo TPR, observou-se que a redução ocorreu em temperaturas menores para os catalisadores contendo La e Nd. Nos testes de reforma seca, as taxas de consumo de CH₄ e CO₂ e de produção de H₂ e CO foram superiores com os catalisadores contendo La e Nd, seguindo a ordem LaNiAl-A > NdNiAl-A > NiAl-A. O teste com LaNiAl-A atingiu 1,2 e 3,5 mmol.gcat⁻¹.min⁻¹ para H₂ e CO, respectivamente. Os catalisadores apresentaram estabilidade na deposição de carbono e nas taxas de consumo e produção ao longo de 5h de reação. Apesar da razão H₂/CO baixa, é possível aplicar o gás de síntese gerado na redução de ferro para fabricação de aço.

Palavras-chave: biogás, gás de síntese, lantânio, reforma seca, sol-gel.

ABSTRACT - In this work, Ni-Al₂O₃ aerogel catalysts containing rare earths (La, Nd) were applied in the dry reforming of biogas for the production of syngas. The catalysts were synthesized by the sol-gel method, dried with supercritical CO₂, and calcined at 700°C. The effect of rare earths as promoters was evaluated in dry reforming tests of a model biogas with a CH₄/CO₂ ratio of 1:1. From XRD, it was possible to observe crystalline phases referring to γ -Al₂O₃ and NiAl₂O₄. The specific surface area was higher in LaNiAl-A and NdNiAl-A compared to NiAl-A. By TPR, it was observed that the reduction occurred at lower temperatures for the catalysts containing La and Nd. In the dry reforming tests, the consumption rates of CH₄ and CO₂ and the production rates of H₂ and CO were higher with the catalysts containing La and Nd, following the order LaNiAl-A > NdNiAl-A > NiAl-A. The test with LaNiAl-A reached 1.2 and 3.5 mmol.g_{cat}-1.min⁻¹ for H₂ and CO, respectively. The catalysts showed stability in carbon deposition and in consumption and production rates over 5 hours of reaction. Despite the low H₂/CO ratio, it is possible to apply the generated syngas in the reduction of iron for steel manufacturing.

Keywords: biogas, dry reforming, lanthanum, sol-gel, syngas.

Introdução

O gás natural, presente em combustíveis fósseis, é uma das principais fontes de metano (CH₄). Para evitar o uso de fontes fósseis como matéria-prima para obter CH₄, pode-se utilizar tecnologias renováveis, como a gaseificação de biomassa e a digestão anaeróbica, que produzem biogás, composto principalmente CH₄ e dióxido de carbono (CO₂) (1).

Tecnologias como a reforma seca utilizam os principais componentes do biogás (metano e dióxido de carbono) e podem convertê-lo em hidrogênio (H₂) e monóxido de carbono (CO), cuja mistura é utilizada na produção de combustíveis e produtos químicos de alto valor (2).

Catalisadores contendo níquel (Ni) como fase ativa têm ganhado atenção significativa na reforma seca devido à abundância e ao baixo custo dos precursores de Ni. Tipicamente, a fase ativa de níquel é dispersa sobre um suporte cerâmico, sendo a alumina (Al₂O₃) uma opção particularmente atrativa devido as suas altas área superficial estabilidade térmica (3).

Uma forma de aprimorar as propriedades de catalisadores para a reforma seca é incorporando promotores. Óxidos de terras raras exibem melhor dispersão da fase ativa e aumento de sua interação com o suporte. Catalisadores incorporando lantânio, neodímio e outros óxidos de terras raras demonstraram estabilidade e eficiência durante a produção de gás de síntese através da reforma seca (4-6).

Além da composição do catalisador, outro fator que afeta fortemente a atividade e a estabilidade catalíticas é o método de síntese. Em particular, propriedades dos catalisadores, como área específica, área metálica, grau de redução e grau de dispersão, estão relacionadas ao método de síntese. Técnicas como impregnação, precipitação e sol-gel têm sido amplamente utilizadas para produzir catalisadores para reforma seca. O método sol-gel se destaca pela formação de suportes estáveis e uma alta dispersão de partículas da fase ativa. Materiais produzidos por esta técnica tendem a possuir alta resistência térmica e baixa desativação catalítica (7).

Uma etapa crítica na produção de catalisadores sintetizados por sol-gel é a secagem. Esta etapa, geralmente realizada por tratamento térmico, pode levar a problemas como encolhimento e zonas defeituosas nos géis. No entanto, pode-se utilizar a tecnologia supercrítica, resultando na geração de catalisadores de aerogel. Este método facilita uma secagem mais suave e uniforme, produzindo catalisadores com maiores área específica e dispersão da fase ativa em comparação os obtidos com a secagem térmica convencional (8).

Estudos recentes exploraram o impacto de promotores de terras raras em catalisadores de aerogel para aumentar seu desempenho na reforma a seco. Um exemplo notável é o trabalho conduzido por Zhao *et al.* (9), que investigou o uso de cério como promotor em catalisadores de aerogel de Ni-SiO₂. Os resultados revelaram que a modificação com Ce conferiu maior resistência à sinterização e deposição de carbono aos catalisadores devido a uma maior dispersão metálica em comparação com catalisadores não promovidos.

Nesse contexto, o presente trabalho teve como objetivo sintetizar aerogéis de Ni-Al₂O₃ promovidos com terras raras (La, Ce) e não promovidos e aplicá-los na reforma seca de biogás, visando aumentar a resistência do catalisador à desativação.

Experimental

Síntese dos catalisadores em aerogel

A síntese de catalisadores de aerogel foi baseada no trabalho de Moura-Nickel *et al.* (10). Ao final da síntese, os catalisadores foram obtidos visando as frações de massa de 10% Ni e 90% Al₂O₃ para o material sem promotor e 10% Ni, 87,5% Al₂O₃ e 2,5% de óxidos de terras raras (La e Nd) para os materiais contendo promotores. Os nitratos de Ni, Al e/ou La, Nd foram incorporados em 45 mL de álcool etílico e agitados por 20 minutos a 500 rpm (agitador magnético 752A, Fisatom) para completa homogeneização. Após isso, 13,5 mL de óxido de propileno foram adicionados como agente gelificante. A mistura foi transferida para 6 seringas (moldes) de 10 mL. Os géis formados permaneceram em repouso por 48 horas e então

foram removidos dos moldes e submersos em álcool etílico para maturação. Após 12 horas, o álcool etílico foi trocado e os géis permaneceram submersos por outras 12 horas.

A secagem dos géis formados foi realizada utilizando CO₂ como fluido supercrítico para a formação de aerogel. As condições operacionais de secagem foram: pressão de 100 bar, temperatura de 50°C, vazão de CO₂ de 0,5 kg.h⁻¹, e tempo de secagem de 2 horas. Após a secagem, os aerogéis formados passaram por calcinação em mufla (F2-DM, Fornitec) a 700°C por 5 horas, com taxa de aquecimento de 10°C.min⁻¹. Os catalisadores obtidos foram nomeados como NiAl-A, LaNiAl-A e NdNiAl-A.

Caracterização dos catalisadores em aerogel

Difração de raios X (DRX, Miniflex 600, Rigaku) foi utilizada para determinar as fases cristalinas dos catalisadores calcinados, usando radiação CuKα (λ = 1,5406 Å) a 30 kV e 15 mA. O banco de dados do International Centre for Diffraction Data (ICDD) foi usado como referência para a identificação das fases cristalinas. Medidas de fisissorção de N2 (ASAP 2020, Micromeritics) a 77 K foram realizadas para determinar as propriedades texturais, incluindo área específica (método BET) e o tamanho e volume de poros médio (método BJH). Redução a temperatura programada (TPR, ChemiSorb 2720-TPx, para Micromeritics) foi realizada investigar comportamento de redução dos catalisadores com uma mistura de 10% H₂/Ar a uma vazão de 40 mL.min⁻¹ em uma faixa de temperatura de 25-950°C (taxa de aquecimento de 10°C.min⁻¹), utilizando o sinal de um detector de condutividade térmica (TCD).

Testes de reforma seca de biogás

Reações de reforma seca de biogás foram conduzidas em uma termobalança (Dyntherm-HP-ST, Rubotherm) equipada com um sistema de dosagem de gás, uma balança magnética (BP211, Satorius AG), um forno de aço inoxidável, controladores de temperatura (Imago 500, Jumo) e um banho termostático (FL1701, Julabo).

Catalisadores (10 mg) foram adicionados em cadinhos de alumina (15 x 10 mm) e colocados dentro do reator. O sistema foi selado e as mudanças de massa foram monitoradas usando o software MessPro. Antes da DR, o catalisador foi reduzido em uma mistura gasosa de 5% H₂/Ar a 900°C a 10°C.min⁻¹. As reações foram realizadas à pressão atmosférica e 600°C, usando uma alimentação de biogás sintético com composição de CH₄/CO₂/Ar (30/30/50 mL.min⁻¹). Todos os gases foram fornecidos pela White Martins e possuíam uma pureza > 99%.

Determinações analíticas

As concentrações de gases (CH₄, CO₂, CO e H₂) foram determinadas usando cromatografia gasosa (GC-2014ATFSPL) equipada com uma coluna empacotada

Carboxen™ 1000 e um detector de ionização de chama (FID) para CH₄, CO₂ e CO. Um metanador (400°C) foi usado para converter CO e CO₂ em CH₄ para detecção pelo FID. O hidrogênio foi quantificado usando um detector de condutividade térmica (TCD). Argônio foi usado como gás de arraste a uma vazão de 30 mL.min⁻¹. As temperaturas do injetor, da coluna e do detector foram ajustadas para 200, 210 e 220°C, respectivamente. As amostras de gás foram injetadas automaticamente a cada 6 minutos e 40 segundos. As concentrações foram determinadas a partir das áreas dos picos usando uma curva de calibração. As taxas de consumo de CH₄ e CO₂ e as taxas de produção de H₂ e CO foram subsequentemente calculadas usando as Equações 1 e 2.

$$r_{consumo} = C_{i,0} - C_{i,t}/m_{cat}.Q_{total}$$
 (1)

$$r_{\text{produção}} = C_{j,t}/m_{\text{cat}}.Q_{\text{total}}$$
 (2)

Onde $C_{i,0}$ é a concentração inicial (mol.L⁻¹) do componente i (CH₄ ou CO₂), $C_{i,t}$ é a concentração (mol.L⁻¹) do componente i no tempo t, $C_{j,t}$ é a concentração (mol.L⁻¹) do componente j (H₂ ou CO) no tempo t, m_{cat} é a massa utilizada de catalisador (g), and Q_{total} é a vazão volumétrica total (L.min⁻¹).

Resultados e Discussão

Caracterização dos catalisadores em aerogel

As estruturas cristalinas das amostras calcinadas foram investigadas por difração de raios X (DRX), como pode ser visto na Figura 1. Os aerogéis exibiram difratogramas semelhantes, revelando três fases cristalinas: NiAl $_2$ O $_4$, α -Al $_2$ O $_3$ e γ -Al $_2$ O $_3$. A predominância da fase γ -Al $_2$ O $_3$ sobre a α -Al $_2$ O $_3$ é atribuída à temperatura de calcinação, que se encontra dentro da faixa esperada (525-1000°C) para a formação de γ -Al $_2$ O $_3$ a partir do precursor nitrato de alumínio (11). A presença do espinélio NiAl $_2$ O $_4$ em todos os catalisadores é consistente com as condições de síntese. Uma baixa carga de níquel (10%) e uma alta temperatura de calcinação (700°C) favoreceram a formação de ligações Ni-O-Al, levando à formação do espinélio (12). A inserção de terras raras não alterou as fases cristalinas do catalisador.

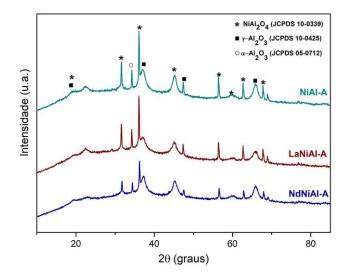


Figura 1. Difratogramas de raios X dos catalisadores sintetizados.

A Tabela 1 mostra os valores dos parâmetros texturais dos catalisadores.

Tabela 1. Propriedades texturais dos catalisadores sintetizados.

Catalyst	Área específica (m²/g)	Diâmetro médio de poro (nm)	Volume de poros (cm³/g)
NiAl-A	173	3,06	1,25
LaNiAl-A	188	2,49	1,14
NdNiAl-A	224	2,64	1,51

Como mostrado na Tabela 1, a incorporação de promotores de terras raras nos catalisadores de aerogel aumentou a área específica. Observou-se uma correlação entre a área específica e o raio iônico dos elementos de terras raras, com íons menores (Nd3+, 0,99 Å) levando a valores mais altos em comparação com íons maiores (La³⁺, 1,06 Å). Essa tendência está alinhada com estudos anteriores (13), que relataram aumento da área específica após a incorporação de terras raras em catalisadores de Ni-Al₂O₃. catalisadores de aerogel mesoporosidade, com diâmetros de poro médio variando de 2 e 3 nm, como confirmado pelas isotermas de adsorção. NiAl-A apresentou o menor volume de poros e o maior diâmetro de poro entre os catalisadores de aerogel, correlacionando-se com sua menor área específica.

A Figura 2 exibe isotermas do tipo IV com histerese H1 para todos os catalisadores de aerogel, indicativo de materiais mesoporosos com poros cilíndricos.

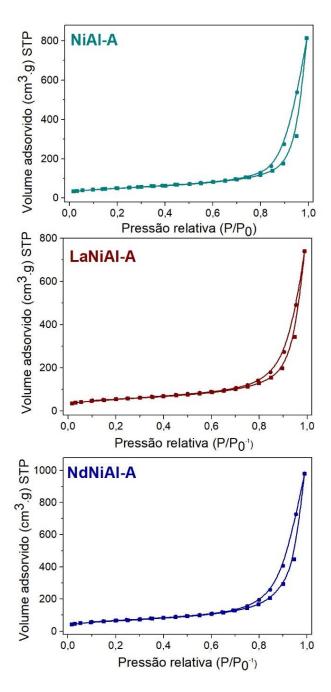


Figura 2. Isotermas de adsorção-dessorção de nitrogênio dos catalisadores sintetizados.

Os perfis de TPR dos catalisadores calcinados de aerogel estão representados na Figura 3. Um pico de consumo de H₂ foi registrado com uma temperatura máxima entre 763 e 798 °C para todas as amostras. Este resultado está de acordo com as análises de DRX que indicaram a presença de Ni como NiAl₂O₄, os quais são conhecidos por serem redutíveis acima de 600 °C e por apresentarem forte interação com o suporte. O estado de oxidação divalente do NiAl₂O₄ torna sua redução mais dificil (15). Notavelmente, um consumo

significativo de H₂ é observado entre 460-600°C para LaNiAl-A e NdNiAl-A, ao contrário de NiAl-A. Isso sugere que os promotores La₂O₃ e Nd₂O₃ interagem com os átomos de oxigênio do suporte, aumentando a mobilidade do oxigênio e facilitando a redução em temperaturas mais baixas.

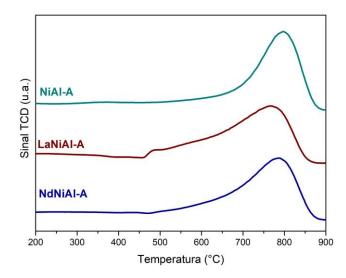
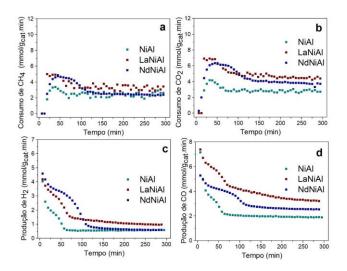
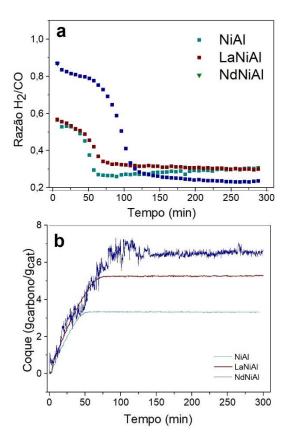



Figura 3. Perfis de TPR dos catalisadores sintetizados.

Testes de reforma seca

Para avaliar o impacto de promotores de óxido de terras raras no desempenho do catalisador, uma série de experimentos foram conduzidos (Figura 8).


Figura 4. Efeito de promotores de terras raras nas taxas de consumo de (a) CH_4 e (b) CO_2 e nas taxas de produção de (c) H_2 e (d) CO na reforma seca de biogás. (massa de catalisador = 10 mg, $T = 600^{\circ}C$, P = 1 atm, WHSV = 900 L.g⁻¹.h⁻¹).

Enquanto o consumo de metano permaneceu relativamente igual em todos os catalisadores (Figura 4a), o

consumo de CO₂ foi aumentado com a adição de promotores (Figura 4b). LaNiAl-A exibiu desempenho superior na produção de H₂ e CO₂ alcançando 1,2 e 3,5 mmol.gcat⁻¹.min⁻¹, respectivamente (Figuras 4c e 4d).

Também foi avaliado o efeito dos promotores na razão H_2/CO e na formação de coque (Figura 5).

Figura 5. Efeito de promotores de terras raras (a) na razão H₂/CO e (b) no coque formado na reforma seca de biogás. (massa de catalisador = 10 mg, T = 600°C, P = 1 atm, WHSV = 900 L.g⁻¹.h⁻¹).

A razão H₂/CO permaneceu relativamente constante em torno de 0,3 para todos os catalisadores (Figura 5a). Sugerese que essa razão bem abaixo do esperado (estequiometricamente a proporção de H₂/CO é de 1:1) é principalmente devido à reação paralela de deslocamento gás-água reversa (Equação 3). A partir dessa reação, parte do H₂ produzido é consumido para gerar CO.

$$CO_{2(g)} + H_{2(g)} \leftrightarrow CO_{(g)} + H_2O_{(g)}$$
 (3)

Apesar disso, a natureza e a composição desse gás de síntese encontra aplicação na indústria siderúrgica, como agente redutor de ferro para a produção de aço. Como descrito por Trinca *et al.* (15), a composição do gás de

síntese não impacta significativamente a qualidade do aço gerado.

Na Figura 5b, observa-se o perfil de coque formado para os catalisadores. Observou-se que houve um aumento de coque nos catalisadores contendo terras raras em comparação com NiAl-A. A presença dos óxidos de La e Nd diminuem a interação fase ativa/suporte, podendo facilitar a sinterização dos catalisadores e, com isso, favorecendo a formação de carbono nos sítios ativos. Apesar disso, observou-se uma estabilidade na formação de coque de todos os catalisadores entre 50 e 100 minutos e o carbono não afetou as taxas de consumo e produção mostradas na Figura 4 durante os 300 minutos de reação.

Conclusões

Neste estudo, catalisadores de Ni-Al₂O₃, promovidos ou não com óxidos de terras raras, foram sintetizados via método sol-gel e aplicados na reforma seca de biogás. Catalisadores em aerogel (NiAl-A, LaNiAl-A e NdNiAl-A) exibiram alta área específica, mesoporosidade e perfil cristalino de NiAl₂O₄ e Al₂O₃. A presença de La₂O₃ e Nd₂O₃ nos catalisadores aerogel aumentou a área específica e diminuiu a interação entre a fase ativa e o suporte, facilitando a redução.

Nos testes de reforma seca a 600°C com catalisadores contendo (ou não) promotores, as taxas de produção de H_2 e CO seguiram a ordem LaNiAl-A > NdNiAl-A > NiAl-A, mostrando que a presença de terras raras melhorou o desempenho do processo. Todos os catalisadores testados exibiram estabilidade na formação de carbono. O gás de síntese com baixa razão H_2/CO gerado a partir da reforma de biogás pode ser aplicado como agente redutor de ferro na produção de aço.

Agradecimentos

Os autores agradecem à CAPES pela bolsa de pesquisa, ao Laboratório de Tecnologias Limpas e Refino (Labrefino/Lateclim, UFPE) pelas análises de caracterização, ao Laboratório de Termodinâmica e Tecnologia Supercrítica pelo aparato de secagem dos catalisadores e ao Laboratório de Energia e Meio Ambiente (LEMA, UFSC) pela execução dos testes de reforma catalítica.

Referências

- 1. R. Chein; Z. Yang, ACS Omega 2019, 4, 20911-20922.
- M. Dan; M. Mihet; G. Borodi; M. D. Lazar, *Catal. Today* 2021, 366, 87-96.
- 3. Y. C. Sharma; A. Kumar; R. Prasad; S. N. Upadhyay, *Renew. Sustain. Energy Rev.* **2017**, *74*, 89-103.

- E. Akiki; D. Akiki; C. Italiano; A. Vita; R. Abbas-Ghaleb; D. Chlala; G. D. Ferrante; M. Lagana; L. Pino;
 S. Specchia, *Int. J. Hydrogen Energy* 2020, 45, 21392-21408.
- 5. K. Li; C. Pei; X. Li; S. Chen; X. Zhang; R. Liu; J. Gong. *Appl. Catal. B* **2020**, *264*, 118448.
- C. Pham; A. N. T. Cao; P. T. T. Phuong; L. K. H. Pham;
 T. T. V. Tran; T. H. Trinh; D. N. Vo; T. P. T. Bui; T. M. Nguyen, *J. Energy Inst.* 2022, 25, 314-322.
- S. J. H. Rad; M. Haghighi; A. A. Eslami; F. Rahmani;
 N. Rahemi, *Int. J. Hydrogen Energy* 2016, 41, 5335-5350.
- L.Chen; H. Wu; P. Chen; W. Liu; D. Zhang; T. Yang;
 J. Li, J. Sol-Gel Sci Technol. 2021, 99, 589-599.
- X. Zhao; M. Lu; H. Li; J. Fang; L. Shi; D. Zhang, New J. Chem. 2017, 41, 4869-4878.
- C. D. Moura-Nickel; R. L. Costa; S. R. S. Ferreira; R. F. P. M. Moreira; H. J. José, *Int. J. Hydrogen Energy* 2019, 44, 11861-11871.
- 11. I. F. Myronyuk; V. I. Mandzyuk; V. M. Sachko; V. M. Gun'ko, *Nanoscale Res. Lett.* **2016**, *11*, 153.
- 12. C. Li; Y-W. Chen, *Thermochim. Acta* **1995**, *256*, 457-465
- 13. M. H. Amin; S. Putla; S. B. A. Hamid; S. K. Bhargava, *Appl. Catal. A* **2015**, *492*, 160-168.
- 14. M. Z. Hassain; M. B. I. Chowdhury; A. K. Jhawar; P. A. Charpentier, *Biomass Bioenergy* **2017**, *107*, 39-51.
- 15. A. Trinca; D. Patrizi; N. Verdone; C. Bassano; G. Vilardi, *J. Clean. Prod.* **2023**, *427*, 139081.