

Hidrogenação de CO₂ para produção de CH₄ usando catalisador de níquel suportado em zeólita clinoptilolita

João Felipe S. Barros*1, Miguel Christian Maia Cruz¹, Ronaldo Teixeira Sousa*1, Regina C. R. dos Santos², Antoninho Valentini¹

¹ LANGMUIR - Laboratório de Adsorção e Catálise/Departamento de Química Analítica e Físico-Química/Universidade Federal do Ceará - UFC, Fortaleza, Brasil

Resumo/Abstract

RESUMO – O presente trabalho investiga a eficiência do catalisador de níquel suportado em zeólita clinoptilolita (Ni/ZC) na reação de hidrogenação do CO₂ para produção de CH₄. O catalisador foi sintetizado via método de impregnação úmida e caracterizado por diferentes técnicas físico-químicas, incluindo fluorescência de raios X (FRX), difração de raios X (DRX), redução a temperatura programada (TPR-H₂) e análise termogravimétrica e termodiferencial (TGA/DTA). Os resultados evidenciam que o método de impregnação úmida foi eficiente na incorporação de óxido níquel na superfície da zeólita, preservando sua estrutura, cristalina. As características químicas do catalisador Ni/ZC em relação à zeólita inicial, resultou em desempenho catalítico com conversão máxima de CO₂ de 34%. Flutuação na formação de CH₄ sugere a ocorrência de possíveis reações paralelas na superfície do catalisador. Essas reações competem pelos sítios ativos e afetam a performance catalítica do material na reação de hidrogenação do CO₂.

Palavras-chave: Níquel, zeólita, hidrogenação, CO₂, metano.

ABSTRACT – This work investigates the efficiency of the nickel catalyst supported on clinoptilolite zeolite (Ni/ZC) in the hydrogenation reaction of CO2 to produce CH4. The catalyst was synthesised using the wet impregnation method and characterised using various physicochemical techniques, including X-ray fluorescence (XRF), X-ray diffraction (XRD), Temperature-programmed reduction (TPR- H_2) and Thermogravimetric and thermodifferential analysis (TGA/DTA). The results show that the wet impregnation method efficiently incorporated nickel oxide into the zeolite surface, preserving its crystalline structure. The chemical characteristics of the Ni/ZC catalyst concerning the initial zeolite resulted in catalytic performance with a maximum CO₂ conversion of 34%. Fluctuations in the formation of methane (CH₄) suggest the occurrence of possible parallel reactions on the catalyst surface. These reactions compete for active sites and affect the material's catalytic performance in the CO₂ hydrogenation reaction.

Keywords: Nickel, zeolite, hydrogenation, CO₂, methane.

Introdução

As emissões excessivas de dióxido de carbono (CO₂) na atmosfera tornaram-se uma preocupação global, contribuindo significativamente para problemas ambientais e de saúde humana. Assim, diversas estratégias têm sido desenvolvidas para controlar e mitigar essas emissões. No entanto, apesar dos esforços, a quantidade de CO₂ efetivamente convertida em valiosos produtos por meio de diferentes reações químicas ainda é relativamente baixa (1).

Nesse contexto, a pesquisa por novos materiais catalíticos tem se destacado como uma abordagem promissora para

melhorar a eficiência dos processos de conversão de CO₂, incluindo sua hidrogenação para a produção de produtos valiosos, como reagentes e solventes. Entre os catalisadores comumente utilizados, os baseados em metais nobres, como rutênio (Ru) e platina (Pt), são conhecidos por sua alta atividade nas reações de reforma do metano e hidrogenação de CO₂.

No entanto, o elevado custo e a baixa viabilidade econômica limitam sua aplicação em larga escala. Como alternativa, catalisadores à base de níquel (Ni) têm atraído atenção devido ao seu baixo custo e alta atividade catalítica.

² Laboratório de Química/ Curso de Química/Universidade Estadual do Ceará, Campus FACEDI, Itapipoca, Brasil.

^{*}E-mail: joaofelipe06@alu.ufc.br, ronaldo.sousa@urca.br

No entanto, esses materiais são suscetíveis à desativação durante o processo catalítico (2).

Uma estratégia para melhorar o desempenho de catalisadores à base de níquel é o uso de suportes adequados, que promovem uma alta dispersão do metal, aumentando sua eficiência. Nesse sentido, uma das classes de materiais bastante estudados como suporte catalítico ou catalisadores, destacam-se as zeólitas, compostos aluminossilicatos cuja estrutura é formada por tetraedros [AlO₄]⁻ e [SiO₄]. Nos materiais zeolíticos os tetraedros são interligados por vértices, formando uma rede porosa (3).

Entre os inúmeros tipos de zeólitas conhecidas, a clinoptilolita tem se destacado como suporte em processos catalíticos, devido ao seu baixo custo e ampla disponibilidade (4 – 7). Sua fórmula molecular é (Na, K, Ca)₄Al₆Si₃₀O₇₂·24H₂O, com uma razão Si/Al entre 4,0 e 5,3. A clinoptilolita apresenta uma estrutura cristalina composta por dois canais paralelos, formados por anéis de dez e oito membros, com poros que variam de microporos a meso- e macroporos, os quais são ocupados por moléculas de água (8).

Nesse sentido, o presente trabalho busca avaliar a atividade catalítica do níquel suportado em zeólita clinoptilolita na hidrogenação de CO₂ para a produção de metano (CH₄). As caracterizações foram realizadas para obter informações detalhadas sobre a composição química, propriedades estruturais, redox e estabilidade térmica do catalisador.

Experimental

Preparação do catalisador Ni/ZC

Amostra comercial de zeólita clinoptilolita foi inicialmente submetida a um processo de troca iônica com solução de NH_4NO_3 (0,5 mol L^{-1}), mantida a 80 °C por 1 hora, sob agitação constante. A mistura resultante foi filtrada, lavada com água destilada até remoção completa dos íons residuais e seca em estufa a 60 °C por 24 horas. O material obtido foi então calcinado a 500 °C por 2 horas em fluxo contínuo de ar.

O catalisador Ni/ZC foi preparado pelo método de impregnação úmida, onde a zeólita calcinada foi adicionada a uma solução de Ni(NO₃)₂, com volume ajustado para obter um teor mássico final de 10% de níquel. A solução foi mantida sob agitação constante e aquecimento suave até a completa evaporação do solvente. Posteriormente, o catalisador foi seco a 60 °C e calcinado a 500 °C por 1 hora sob fluxo de ar.

Caracterizações do catalizador Ni/ZC

A composição química na forma de óxidos do material foi determinada por Fluorescência de Raios-X (FRX), utilizando um espectrômetro ZSX Mini II (Rigaku), equipado com tubo de raios-X de paládio (Pd), operando a 40 kV e 1,2 mA.

As análises de difração de Raios-X (DRX) das amostras da zeolita clinoptilolita (ZC e 10Ni/ZC) foram realizadas em um difratômetro Rigaku DMAXB com radiação CuK α (λ = 1,54060 Å), operando a 40 kV e 25 mA, na faixa de 2 θ de 10° a 90°. As fases cristalinas foram identificadas utilizando o software *XPert HighScore Plus* (Panalytical), contendo padrão de difração de referência depositados na base de dados *Inorganic Crystal Structure Database* (ICSD).

A redutibilidade do catalisador foi avaliada por Redução a Temperatura Programada com H_2 (TPR- H_2). O experimento foi conduzido em um reator de quartzo, onde previamente a amostra Ni/ZC foi submetida ao prétratamento térmico a 200°C sob fluxo de N_2 por 30 min. Após a análise de TPR - H_2 , foi conduzida aquecendo-se a amostra da temperatura ambiente até 990 °C, usando uma taxa de 10 °C/min sob fluxo constante de uma mistura redutora (8% de H_2/N_2). O consumo de hidrogênio foi monitorado com um detector de condutividade térmica (DCT).

A estabilidade térmica foi avaliada por meio das análises termogravimétrica e termodifencial (TGA/DTA) usando um equipamento de termoanálise da Shimadzu DTG-60H com DTA acoplado. As amostras foram adicionadas em um cadinho de alumínio e os experimentos foram conduzidos com uma taxa de aquecimento de 10 °C/min, com rampa de temperatura de 25 °C até 900 °C, sob fluxo de ar sintético com vazão de 40 mL/min.

Testes catalíticos

A atividade catalítica do catalisador Ni/ZC foi avaliada na reação de hidrogenação de CO₂. A reação foi conduzida usando reator de quartzo com leito fixo e 40 mg de amostra.

O catalisador foi previamente ativado a 500 °C por 1 hora sob fluxo de H_2 . A reação foi conduzida a 400 °C com uma mistura de $H_2/\text{CO}_2/\text{N}_2$ (3:1:1), a um fluxo total de 20 mL/min, utilizando N_2 como padrão interno. Os produtos foram monitorados usando cromatógrafo a gás, equipado com duas colunas (Porapak Q e peneira molecular 5A), detector de condutividade térmica (DCT) e empregando o argônio como gás de arraste. A conversão de CO_2 e formação de metano foram calculadas de acordo com as equações 1 e 2.

Conversão de CO2 (%)=
$$\frac{A_{\text{CO2 in}} - A_{\text{CO2 out}}}{A_{\text{CO2 in}}} \times 100$$
 (1)

Onde $A_{CO2 in}$ = área do pico cromatográfico do CO_2 que entra no reator, $A_{CO2 out}$ = área do pico cromatográfico do CO_2 que sai do reator.

Formação de CH₄ (%) =
$$f \frac{\binom{A_{CH4}}{A_{N2}}}{\binom{A_{CH4}}{A_{N2}+1}} x 100$$
 (2)

Onde A_{CH4} é a área do pico cromatográfico do gás metano liberado na reação enquanto que A_{N2} é a área do N_2 usado como padrão interno, f é fator de correção da resposta.

Resultados e Discussão

Os resultados da análise de composição química das amostras ZC e Ni/ZC, obtidos por Fluorescência de Raios-X (FRX), são apresentados na Tabela 1. Observa-se que ambas as amostras contêm principalmente SiO₂, Al₂O₃, CaO, K₂O e Fe₂O₃, componentes característicos da zeólita clinoptilolita. Além disso, foram detectados teores mássicos de TiO₂, MnO, MgO, and SrO, considerados como impurezas presentes na zeólita comercial. No entanto, a amostra Ni/ZC apresentou uma redução significativa nos teores de SiO₂, Al₂O₃ e CaO, acompanhada da introdução de 39,99% de NiO, confirmando a incorporação de níquel na estrutura do material.

Tabela 1. Porcentagem mássica dos óxidos presentes nas amostras de ZC e Ni/ZC determinada por FRX.

Compostos	Porcentagem em massa (%)	
	ZC	Ni/ZC
SiO ₂	69,0540	41,9070
Al ₂ O ₃	7,7469	5,8679
CaO	8,6501	4,8417
K ₂ O	8,0047	3,7466
Fe ₂ O ₃	5,1249	3,1056
TiO_2	0,6290	0,3933
MnO	0,1329	-
MgO	0,5992	-
SrO	0,0582	0,1491
NiO	-	39,9890
NiO	-	39,9890

A diminuição da razão SiO₂/Al₂O₃ de 8,9 para 7,2 na amostra Ni/ZC indica uma modificação estrutural significativa, possivelmente associada à substituição de cátions e ao rearranjo da rede aluminossilicato durante o processo de impregnação e tratamento térmico. Essa modificação pode influenciar diretamente as propriedades catalíticas do material, uma vez que a alteração na razão Si/Al afeta a acidez e a estabilidade térmica da zeólita.

Além disso, a presença de impurezas, como ${\rm TiO_2}$, ${\rm MnO}$, ${\rm MgO}$ e ${\rm SrO}$, foi detectada em ambas as amostras. No

entanto, a redução dos teores de CaO, K₂O e Fe₂O₃ na amostra Ni/ZC sugere que o processo de impregnação também impactou a composição química da zeólita original, promovendo a remoção parcial desses compostos.

Os difratogramas de raios X (DRX) das amostras ZC e Ni/ZC são apresentados na Figura 1. As fases cristalinas identificadas por DRX nas amostras de ZC e Ni/ZC são mostradas nos difratogramas da Figura 1. Picos de difração em $2\theta = 11,18^{\circ}$, $13,06^{\circ}$, $17,33^{\circ}$, $22,43^{\circ}$, $28,06^{\circ}$ e $32,02^{\circ}$, correspondente aos planos de reflexão (2 0 0), (0 0 1), (-3 11), (4 0 0), (0 2 2) e (4 2 1), respectivamente, são característicos de estrutura monoclínica da zeólita clinoptilolita (ICSD 73412) (9). Na amostra Ni/ZC, além dos picos da clinoptilolita, foram observados picos adicionais em $2\theta = 37,32^{\circ}$, $43,39^{\circ}$ e $63,09^{\circ}$, correspondentes à fase cristalina cúbica de NiO (ICSD 43740) (10). Isso confirma a deposição de óxido de níquel na superfície da zeólita.

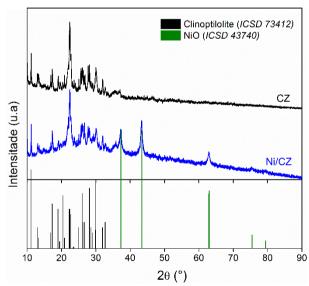
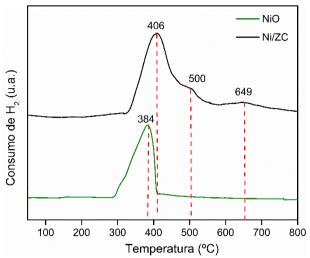



Figura 1. Difratograma das amostras de ZC e Ni/ZC.

A redutibilidade das espécies presentes nas amostras foi avaliada por TPR-H₂, como ilustrado na Figura 2. Para o NiO puro, observou-se uma banda simétrica de consumo de hidrogênio em 384 °C, associada à redução direta de Ni²⁺ a Ni⁰ (11).

Em contraste, o perfil de TPR-H₂ da amostra Ni/ZC apresentou três picos em uma ampla faixa de temperatura de redução, entre 300 e 700 °C, indicando diferentes interações entre as espécies de NiO e o suporte zeolítico. O intenso pico com máximo em 406 °C, é atribuído à redução de cristalina espécies de NiO fracamente interagindo com a superfície da zeólita. Enquanto que o pico em 500 °C indica a redução de espécies com interação mais forte com os meso- e microporos da zeólita. Por fim, uma fraca e larga banda de consumo de hidrogênio em torno de 649 °C pode ser

associada a redução de espécies de NiO intimamente ligadas à rede de aluminossilicato da zeólita, indicando uma forte interação metal-suporte (12).

Figura 2. Perfil de TPR-H2 das amostras de ZC e Ni/ZC

Esses resultados confirmam que o método de impregnação e tratamento térmico gerou uma boa dispersão das espécies de NiO na superfície e nos poros da clinoptilolita, o que é fundamental para o controle da atividade catalítica e estabilidade do material em aplicações de hidrogenação de CO₂.

As análises termogravimétrica e termodiferencial (TGA/DTA) das amostras de zeólita pura (ZC) e impregnada com níquel forneceram informações importantes sobre a estabilidade térmica. Na amostra ZC (Figura 3), observou-se uma perda inicial de massa entre 25 °C e 150 °C, atribuída à dessorção de água fisicamente adsorvida. Um pico exotérmico em 305 °C também pode ser visto, o qual deve estar relacionado à decomposição térmica de precursores orgânicos ou impurezas voláteis (13).

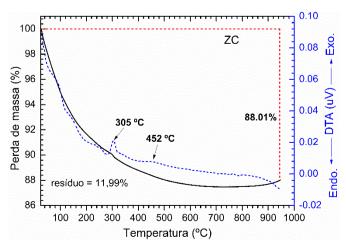


Figura 3. Perfil das curvas de TGA/DTA da amostra Ni/ZC

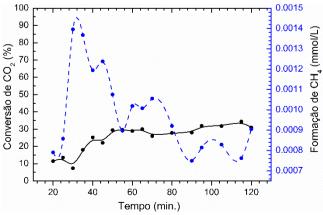

Para a amostra Ni/ZC (Figura 4), o perfil TGA/DTA revelou uma rápida perda de massa inicial na região entre 25 °C e 300 °C, associada ao processo endotérmico de remoção de água adsorvida na superfície e nos poros da zeólita. Dois picos exotérmicos commáximos em 610 °C e 692 °C, estão relacionado à conversão dos resíduos do precursor de nitrato de níquel a óxido de níquel (NiO) com formação de defeitos na estrutura da zeólita e a possível criação de vacâncias de oxigênio (14).

Figura 4. Perfil das curvas de TGA/DTA da amostra Ni/ZC

Esses resultados demonstram que a impregnação com níquel e o tratamento térmico modificam significativamente o comportamento térmico da zeólita, evidenciando uma maior complexidade nos processos de decomposição e interação entre o metal e o suporte.

A performance catalítica na reação de hidrogenação do CO₂ utilizando a amostra Ni/ZC são apresentados na Figura 5. O catalisador demonstrou significativa atividade, catalítica nas condições reacionais, alcançando uma conversão máxima de 34% após 50 minutos de reação e mantendo-se estável ao longo do tempo.

Figura 5. Perfomance catalítica do catalisador Ni/ZC na reação de hidrogenação do CO₂.

Esse comportamento sugere que o catalisador possui uma boa estabilidade e resistência à desativação catalítica pela deposição de carbono. A formação de CH₄ apresentou uma flutuação ao longo do tempo de reação, o que pode estar relacionado à competição entre diferentes reações pararlelas que podem ocrrem na superfície do catalisador (15). A literatura indica que a desativação pode ocorrer devido à quimissorção irreversível de CO₂ em sítios ativos, formando carbonatos e água, que bloqueiam os sítios ativos, diminuindo a seletividade de formação do metanho (16).

Além disso, outro fator responsável pela redução de seletividade é a temperatura. Temperaturas acima de 350 °C favorecem a hidrogenação de intermediários contendo grupos carbonila (C=O) nas partículas de Ni, resultando em espécies como formaldeído e sua consecutiva hidrogenação a metanol, o qual podem se decompor em metano (17). Este comportamento indica que o controle preciso da temperatura e da razão H₂/CO₂ é essencial para otimizar a seletividade da reação e minimizar a desativação do catalisador. Esses resultados evidenciam que o catalisador Ni/ZC apresenta boa estabilidade e atividade na hidrogenação de CO₂, com potencial para aplicações em processos catalíticos sustentáveis.

Conclusões

O presente trabalho reporta a síntese e caracterização de um catalisador de níquel suportado em zeólita clinoptilolita (Ni/ZC) e sua aplicação na hidrogenação de CO2. As análises da composição química, propriedades estruturais e redox confirmaram a eficiente impregnação de óxido de níquel na superfície da zeólita, além de modificações na estrutura do suporte. O catalisador Ni/ZC demonstrou atividade catalítica estável, alcancando uma conversão máxima de 34% de CO₂ em condições específicas de reação. No entanto, a flutuação na formação de metano sugere a ocorrência de paralelas/competividas reações pelos sítios ativos do catalisador, destacando a importância do controle operacional para otimizar a seletividade. Os resultados obtidos reforçam o potencial do catalisador Ni/ZC para processos de hidrogenação de CO2, contribuindo para o desenvolvimento de tecnologias sustentáveis de conversão de carbono.

Agradecimentos

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq pelo apoio financeiro para a realização desse trabalho, ao Programa de Pós-Graduação em Química da Universidade Federal do Ceará (PGQUIM – UFC), à Central Analítica do Departamento de Física (UFC), ao Laboratório de Raios X (UFC).

Referências

- C. Wei; H. Ding; Z. Zhang; F. Lin; Y. Xu; W. Pan, *International Journal of Hydrogen Energy.* 2024, 58, 872-891.
- 2. B. Yang; B. Zhao; S. Kattel; Q. Wu; S. Yao; D. Su; J.G. Chen, *Journal of Catalysis*. **2019**, 374, 60-71.
- 3. J. L. Figueiredo; F. R. Ribeiro, *Catálise Heterogénea*, Fundação Calouste Gulbenkianm, Lisboa, 1989
- 4. G. S. P. Soylu; Ö. Zeynep, B İsmail, *Chemical Engineering Journal.* **2010**, 162, 380–87.
- 5. R. Moreno-Tost, et al., *Applied Catalysis B: Environmental.* **2004**, 50, 279–88.
- 6. T. K. Katranas et al. *Microporous and Mesoporous Materials*. **2003**, 61, 189–98.
- 7. Z. Özçelik; G. S. P. Soylu; İ. Boz, *Chemical Engineering Journal.* **2009**, 155, 94-100.
- 8. T. Kurniawan, et al. Results in Chemistry. 2022, 4, 100584.
- 9. K. Talkhoncheh; M. Haghichi, *Journal of Natural Gas Science and Engineering*. **2015**, 23, 16–25.
- 10. M. A. A. Aziz et al. *Applied Catalysis B: Environmental.* **2014**, 147, 359–368.
- 11. L. M. S. Silva; J. J. M. Órfão; J. L. Figueiredo, *Applied Catalysis A: General.* **2001**, 209, 145-154.
- 12. M. A. Salam; B. Abdullah; M. A. Islam, *Chemical Engineering Research and Design*, **2017**, 118, 103–111.
- 13. A. C. B. Queiróz; V. P. S. Caldeira, *Manual Prático de Termogravimetria*, Caule de Papiro, Natal, 2022.
- 14. W.U. Rehman, et. al, *Journal of Materials Science: Materials in Electronics*, **2023**, 34, 15.
- K. Karpińska-Wlizło; W. Zawadzki; G. Słowik; W. Gac, Chemical Engineering Journal, 2024, 502, 157827.
- 16. O. E. Medina; A. A. Amell; D. López; A. Santamaría, *Renewable and Sustainable Energy Reviews*, **2025**, 207, 114926
- G. Garbarino; P. Riani; L. Magistri; G. Busca, *International Journal of Hydrogen Energy*, 2014, 39, 11557–11565.