

Uso de surfactantes orgânicos na síntese de catalisadores de CuO-ZnO para hidrogenação de CO2 a metanol

Renatto Andrade Angeli^{1,2} Gustavo Medeiros de Paula^{1,2} José Mansur Assaf^{1,2} Janaina Fernandes Gomes^{1,2,*}

¹Laboratório de Catálise, Departamento de Engenharia Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235,13665-905, São Carlos, SP, Brasil. janainafg@ufscar.br

²Instituto Nacional de Ciência e Tecnologia - INCT CAPICUA, Departamento de Engenharia Química, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brasil.

Resumo/Abstract

RESUMO - A crescente emissão de CO₂ proveniente da queima de combustíveis fósseis impulsiona a busca por processos de captura e conversão desse gás em produtos de valor agregado. Uma das possíveis alternativas é a hidrogenação de CO₂ para produção de metanol, que pode ser empregado como combustível limpo e insumo para a indústria química. Porém, o processo enfrenta desafios termodinâmicos e cinéticos, exigindo catalisadores eficientes e estáveis. Este trabalho aborda a síntese de catalisadores à base de Cu-ZnO, utilizando ureia e bicarbonato de sódio como agentes precipitantes e diferentes surfactantes orgânicos para aumentar a área superficial e estabilidade térmica desses materiais. Os catalisadores foram caracterizados por DRX, TGA e MEV, demonstrando a influência das condições de síntese nas características do material. A avaliação catalítica revelou que a conversão e seletividade para metanol são fortemente impactadas pelas propriedades estruturais dos catalisadores e pela mecânica de precipitação dos seus precursores. Esta pesquisa contribui para o desenvolvimento de materiais catalíticos mais eficientes na conversão de CO₂ em metanol e processos sustentáveis para a indústria química e energética.

Palavras-chave: Hidrogenação de CO₂, Cu-ZnO, diferentes agentes precipitantes, controle de precursores.

ABSTRACT - The increasing emission of CO2 from the combustion of fossil fuels drives the search for processes to capture and convert this gas into value-added products. One possible alternative is the hydrogenation of CO2 to produce methanol, which can be used as a clean fuel and a feedstock for the chemical industry. However, the process faces thermodynamic and kinetic challenges, requiring efficient and stable catalysts. This work addresses the synthesis of Cu-ZnO-based catalysts using urea and sodium bicarbonate as precipitating agents and different organic surfactants to enhance the surface area and thermal stability of these materials. The catalysts were characterized by XRD, TGA, and SEM, demonstrating the influence of synthesis conditions on the material properties. Catalytic evaluation revealed that conversion and selectivity to methanol are strongly impacted by the structural properties of the catalysts and the precipitation mechanism of their precursors. This research contributes to the development of more efficient catalytic materials for CO2-to-methanol conversion and to sustainable processes for the chemical and energy industries.

Keywords: CO₂ hydrogenation, Cu-ZnO, different precipitating agents, precursor control.

1. Introdução

Os combustíveis fósseis correspondem a 86% da matriz energética global [1]. Essas fontes são compostas por hidrocarbonetos com diferentes proporções de carbono e hidrogênio, possuindo alta densidade energética. Quando consumidos, liberam energia, utilizada para diversos fins, além de gerar uma quantidade significativa de vapor d'água e carbono, na forma de grafite, CO e CO₂ [2]. Embora o dióxido de carbono (CO₂) exista naturalmente na atmosfera terrestre e desempenhe um papel crucial na regulação da temperatura do planeta, sua emissão proveniente de processos industriais aumentou significativamente.

Segundo o Painel Intergovernamental sobre Mudanças Climáticas (IPCC), uma organização científico-política criada em 1988 pela Organização das Nações Unidas (ONU), as emissões de gases de efeito estufa cresceram 70% entre 1970 e 2004, com um aumento de 24% desde 1990. Especificamente, as emissões de dióxido de carbono (CO₂) aumentaram 80% no mesmo período e 77% desde 1990 [3]. Como consequência, a concentração de CO₂ na atmosfera ultrapassou a marca de 400 ppm, podendo atingir o nível mais alto dos últimos 20 milhões de anos, levando a uma crise climática devido ao aquecimento global [4].

Diante desses desafios, torna-se essencial desenvolvimento de processos químicos voltados à captura, armazenamento e conversão do CO2 em produtos de valor agregado [5]. Nesse cenário, a transformação do CO2 em metanol (CH₃OH) destaca-se como uma das rotas mais promissoras, devido à relativa simplicidade do processo e à ampla gama de aplicações industriais do metanol. Em 2019, por exemplo, a demanda global por metanol foi de aproximadamente 98 milhões de toneladas, em 2024 esse valor ultrapassou os 110 milhões de toneladas. Além disso, o metanol representa um dos produtos de menor complexidade estrutural gerado a partir de uma matriz reacional intrinsecamente complexa [6-8].

Atualmente, a produção de metanol é majoritariamente derivada do metano (89,5%) [9]. Esse processo envolve reações em duas etapas, sendo a primeira a produção de gás de síntese, uma mistura de CO e H₂, e a segunda etapa consiste na conversão catalítica do gás de síntese para a formação de metanol. No entanto, a produção de metanol a partir do metano enfrenta desafios devido ao elevado custo de produção do gás de síntese, que representa 60% do custo total do processo [10]. Uma alternativa a esse processo é a substituição da matéria-prima por CO₂ para sua conversão direta em metanol, Eqs. 1, 2 e 3 [11,12].

$$CO_2 + 3H_2 \rightleftarrows CH_3OH + H_2O \tag{1}$$

$$CO_2 + H_2 \rightleftarrows CO + H_2O \tag{2}$$

$$CO + 2H_2 \rightleftarrows CH_3OH \tag{3}$$

Nesse processo tipicamente são empregadas matrizes catalíticas compostas por óxidos mistos, principalmente os óxidos de CuO-ZnO e Cu-ZnO-Al₂O₃. Porém, esses

materiais, quando expostos a elevadas temperaturas, tendem a sofrer desativação por sinterização, que provoca a aglomeração dos sítios ativos e consequente perda área superficial catalítica [12,13]. Uma estratégia para tentar solucionar esse problema seria o uso de óxidos mistos porosos. Nesse cenário, este trabalho investigou a influência da utilização de diferentes moléculas orgânicas como potenciais agente porogênicos e dispersantes na síntese de óxidos de CuO-ZnO para conversão de CO₂ em metanol.

2. Experimental

2.1. Materiais

Nitrato de zinco (Zn(NO₃)₂.6H₂O, 98,0%), nitrato de cobre (Cu(NO₃)₂.3H₂O, 99,0%), bicarbonato de sódio (BiNa, NaHCO₃, 99%), ureia (NH₂CONH₂, 99,0%), ácido cítrico (ACCI, HOC(COOH)(CH₂COOH)₂, 99,5%), brometo de cetiltrimetilamônio (CTAB, C₁₆H₃₃N(CH₃)₃Br, 98,0%) e N-Lauroilsarcosina (NLAU, CH₃(CH₂)₁₀CON(CH₃)CH₂COONa, 94%), foram adquiridos da Sigma Aldrich (Merck).

2.2. Síntese dos catalisadores

Precursores à base de Cu-Zn foram sintetizados com razões molares de 0,20 Cu: 0,8 Zn, utilizando misturas reacionais com as seguintes composições molares: 1 Zn(NO₃)₂.6H₂O: 0,25 Cu(NO₃)₂.3H₂O: 9 NaHCO₃: 800 H₂O ou 1 Zn(NO₃)₂.6H₂O: 0,25 Cu(NO₃)₂.3H₂O: 9 NH₂CONH₂: 800 H₂O ou 1 Zn(NO₃)₂.6H₂O: 0,25 Cu(NO₃)₂.3H₂O: 0,2 (ACCI ou CTAB ou NLAU): 9 NH2CONH2: 800 H2O. Os procedimentos empregados foram baseados em adaptações realizadas nos métodos descritos na literatura [14]. Em um típico procedimento, utilizando dois béqueres de 25 mL, quantidades adequadas de nitrato de zinco e nitrato de cobre foram dissolvidas separadamente em água deionizada, gerando uma Solução A (nitrato de zinco e água) e uma Solução B (nitrato de cobre e água). Ao mesmo tempo, utilizando um frasco de 250 mL, quantidades adequadas de agente precipitante, ureia ou bicarbonato de sódio, e material orgânico foram dissolvidos em água deionizada, resultando na Solução C. Posteriormente, as soluções A e B foram simultaneamente gotejadas sobre a solução C em agitação. Após agitação por 15 min, a mistura final foi transferida para recipientes de teflon que foram levados para tratamento hidrotérmico em autoclaves de aço inoxidável, a 100 °C por 72h. Após o tratamento hidrotérmico, a mistura com pH 9 foi separada por centrifugação e o sólido obtido foi lavado até atingir pH ~ 7, e seco em estufa a 70 °C. Os óxidos mistos foram obtidos após calcinação dos precursores a 400 °C por 1 h. Os precursores e óxidos mistos

precursores a 400 °C por 1 h. Os precursores e óxidos mistos foram denominados Cu-Zn-BiNa, CuO-ZnO-BiNa, Cu-Zn-UREA-X e CuO-ZnO-UREA-X, onde BiNa indica o uso de bicarbonato de sódio e X indica a molécula orgânica utilizada.

2.3. Caracterização dos catalisadores

Os precursores dos catalisadores e os óxidos mistos foram caracterizados por DRX para investigar as fases cristalinas das amostras. As análises foram realizadas em um difratômetro Rigaku Miniflex 600, radiação Cu K α (λ = 0,15418 nm), velocidade do goniômetro de 5,0° min⁻¹, voltagem de 40 kV, corrente de 15 mA, passo de 0,02° e ângulo de varredura 20 de 5,0° a 80,0°.

Microscopia eletrônica de varredura (MEV) foi utilizada para obter imagens dos óxidos e estimar sua composição química, por espectrometria de raios X por dispersão de energia (EDS). As imagens dos precursores foram obtidas em um microscópio Philips, modelo XL30 FEG, operado a 25 kV, equipado com um detector Bruker EDS, modelo XFlash® 6/60 e em um microscópio FEI Company Magellan 400 L operando a 15 kV. As amostras foram dispersas em metanol, colocadas em um porta amostras de alumínio, recobertas com ouro e analisadas.

Para os experimentos de H₂-TPR, aproximadamente 50 mg da amostra foram pré-tratados sob fluxo de nitrogênio (30 mL/min), aquecendo-se de temperatura ambiente até 200 °C a uma taxa de 10 °C/min. Em seguida, a amostra foi resfriada até 40 °C sob atmosfera de nitrogênio, sendo então reaquecida até 300 °C, também a 10 °C/min, utilizando uma mistura gasosa de 10% H₂ em Ar (v/v) com fluxo de 30 mL/min. O consumo de hidrogênio foi monitorado por meio de um detector de condutividade térmica (TCD).

Para as análises de passivação com N₂O, a amostra foi pré-tratada conforme descrito para o experimento de H₂-TPR, e os óxidos de Cu foram reduzidos sob fluxo de 10% H₂/Ar (v/v) a 30 mL/min, a 300 °C por 1 hora. Em seguida, o gás foi trocado por nitrogênio (30 mL/min) e a amostra foi resfriada até 40 °C. A essa temperatura, o N₂ foi substituído por uma mistura de 10% N₂O/He (v/v) a 30 mL/min, e a amostra foi exposta a essa mistura por 30 minutos, seguido por mais 30 minutos de fluxo de N₂ (30 mL/min) para remover o N₂O fisicamente adsorvido. Finalmente, foi realizado um segundo procedimento de redução, nas mesmas condições descritas anteriormente.

2.3. Avaliação catalítica

As reações de hidrogenação de CO₂ foram realizadas em um reator de leito fixo de quartzo (8,0 mm de diâmetro interno), operando em fluxo contínuo à pressão atmosférica e temperatura de 200 °C, utilizando 0,2 g de catalisador (GHSV = 12.000 mL g⁻¹ h⁻¹). Antes do início de cada reação, o catalisador foi ativado *in situ* a 300 °C por 1 h sob uma vazão de 30 mL min⁻¹ de H₂ puro. Em seguida, o reator foi resfriado até a temperatura desejada para a reação e alimentado com uma mistura de H₂ puro e CO₂ puro, com

vazões de 30 mL min⁻¹ de H₂ e 10 mL min⁻¹ de CO₂. A reação foi conduzida por 3 h, com os produtos gasosos sendo analisados online e os produtos líquidos sendo condensados e analisados ao final do tempo de reação. As análises dos reagentes não-convertidos e produtos de reação foram realizadas usando um instrumento GC-2014 Plus (Shimadzu, Tóquio, Japão), equipado com dois detectores TCD, um detector FID, cinco colunas empacotadas (Porapak Q, Porapak N, MS-13X e MS-5A) e uma coluna capilar (Stabilwax). A conversão de CO₂, assim como as seletividades e produtividades de CO e metanol, foram calculadas conforme as Eqs. 4, 5, 6, 7 e 8.

$$X_{CO2}(\%) = \frac{F_{CO2,0} - F_{CO2}}{F_{CO2,0}} \cdot 100$$
 (4)

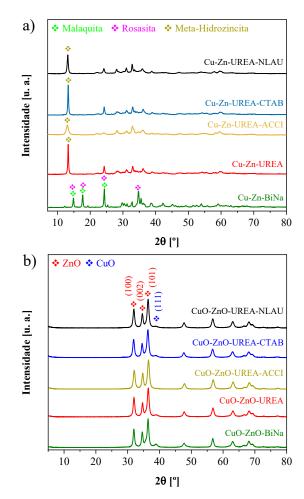
$$S_{CO}(\%) = \frac{n_{CO}}{n_{CO2,0} - n_{CO2}} \cdot 100$$
 (5)

$$S_{MeOH}(\%) = \frac{n_{MeOH}}{n_{CO2,0} - n_{CO2}} \cdot 100$$
 (6)

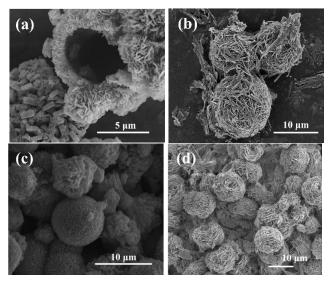
$$P_{CO}(\%) = \frac{n_{CO}}{t_R \cdot m_{Cat}}$$
 (7)

$$P_{\text{MeOH}}(\%) = \frac{n_{\text{MeOH}}}{t_{p} \cdot m_{\text{Cot}}} \tag{8}$$

onde: X_{CO2} (%) é a conversão de CO_2 ; $F_{CO2,0}$ é a vazão de CO_2 alimentada ao reator (mL min⁻¹); F_{CO2} é a vazão de CO_2 na saída do reator (mL min⁻¹); S_{CO} (%) é a seletividade para CO; n_{CO} é o número de mols de CO produzidos durante as 3 h de reação (µmol); $n_{CO2,0}$ é o número de mols de CO_2 alimentados ao reator durante as 3 h de reação (µmol); n_{CO2} é o número de mols de CO_2 que não reagiu durante as 3 h de reação (µmol); S_{MeOH} (%) é a seletividade para metanol; n_{MeOH} é o número de mols de metanol produzidos durante as 3 h de reação (µmol); t_R é o tempo total de reação (h) e t_R é a massa do catalisador utilizada (g).


3. Resultados e Discussão

A Figura 1 apresenta os difratogramas de raios X (DRX) dos diferentes precursores e óxidos sintetizados sem e com a adição dos surfactantes orgânicos ACCI, CTAB e NLAU. Conforme apresentado na Figura 1a, o precursor sintetizado com bicarbonato de sódio apresentou um perfil de difração com quatro picos principais, que, de acordo com a literatura, correspondente a uma mistura de duas fases, malaquita Cu₂(CO₃)(OH)₂ e rosasita (Cu,Zn)₂(CO₃)(OH)₂, que possuem estruturas muito semelhantes, em que Cu e Zn sofrem substituição isomórficas na fase malaquita, para gerar a fase rosasita [15]. Por outro lado, os precursores sintetizados com ureia, independente do uso de agentes orgânicos, apresentaram os mesmos perfis de difração, que, de acordo com a literatura, associam-se a uma fase lamelar metaestável de


hidrozincita Cu_XZn_(4-X)CO₃(OH)₆.H₂O [13]. A partir da Figura 1b é possível observar que que os óxidos mistos derivados dos diferentes precursores apresentam perfis de difração característicos do ZnO, com três picos principais em aproximadamente 31,9°, 34,6° e 36,4°, além de dois picos atribuídos ao CuO, localizados em torno de 35,7° e 38,9° [16].

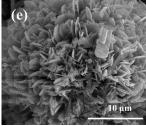
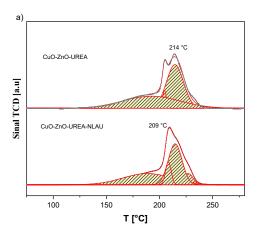
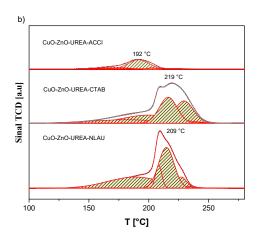

A Figura 2 apresenta as imagens de MEV dos óxidos. A partir da Figura 2a nota-se que o óxido sintetizado com NaHCO3 precipitou sob a forma de grãos microestruturados, compostos por esferas ocas com diâmetros entre 10 e 20 μm , formando uma casca de folhas interconectadas, e grandes blocos retangulares aglomerados. Em contraste, os óxidos sintetizados com ureia, mostrados na Figura 2b, 2c, 2d e 2e, independentemente do uso de agentes orgânicos, produziram esferas com diâmetros entre 10 e 20 μm , compostas por lamelas.

Figura 1. Difratogramas de raios X dos diferentes materiais sintetizados: a) precursores dos óxidos; b) óxidos CuO-ZnO.

Figura 2. Imagens de microscopia eletrônica de varredura dos diferentes materiais sintetizados: a) CuO-ZnO-BiNa; b) CuO-ZnO-UREA; c) CuO-ZnO-UREA-ACCI; d) CuO-ZnO-UREA-CTAB; e) CuO-ZnO-UREA-NLAU.

A Figura 3 apresenta os perfis de H₂-TPR dos catalisadores sintetizados, em que se verifica o consumo de H₂ em função da temperatura. Os picos observados nos gráficos correspondem à redução direta do Cu²⁺ a cobre metálico (CuO + H₂ \rightarrow Cu + H₂O). O ZnO, também presente no material, não é reduzido na faixa de temperatura investigada. As diferentes temperaturas de redução do óxido de cobre estão relacionadas com características do material sintetizado, como o tamanho do cristalito e a dispersão das partículas [16].

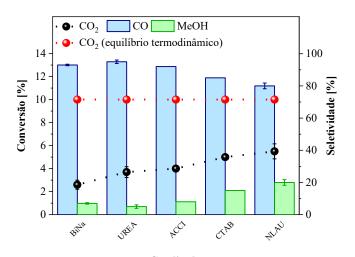

A partir da Figura 3a, é possível compreender o efeito da adição de compostos orgânicos aos materiais. O material sintetizado com NLAU apresentou um pico de redução em temperaturas mais baixas, o que indica a formação de partículas menores e mais bem distribuídas, em comparação com o material obtido apenas com ureia.

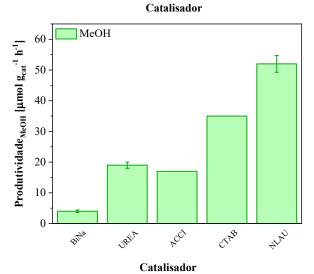

De forma complementar, a Figura 3b compara os perfis de redução dos materiais sintetizados com diferentes agentes orgânicos. O material obtido com ACCI apresentou um perfil de redução deslocado para temperaturas mais baixas; no entanto, o tamanho do pico foi inferior ao das demais amostras, sugerindo que o cobre pode não ter sido completamente precipitado durante a síntese. Já o material sintetizado com CTAB exibiu um pico de redução de

intensidade semelhante ao do material sem aditivo orgânico, porém com a faixa de consumo de hidrogênio levemente deslocada para temperaturas mais altas. Por outro lado, o material com adição de NLAU demonstrou uma distribuição mais homogênea, com o pico de redução deslocado para temperaturas mais baixas.

Os resultados apresentados na Tabela 1, obtidos por meio da passivação com N₂O, fornecem informações sobre a dispersão e a área específica de cobre nos materiais sintetizados com e sem aditivos orgânicos. De modo geral, os materiais com aditivos orgânicos apresentaram maior dispersão do cobre, corroborando a hipótese do efeito dispersante gerado por esses compostos. Além disso, os materiais contendo CTAB e NLAU apresentaram um aumento na área específica de cobre, o que é consistente com a maior dispersão da fase ativa nestes materiais. Em contraste, a adição de ACCI resultou em uma redução da área de cobre, possivelmente devido à menor precipitação de partículas de cobre neste material, conforme discutido anteriormente.

Figura 3. Perfis de redução a temperatura programada com hidrogênio (H₂-TPR) dos catalisadores: (a) CuO-ZnO-UREA e CuO-ZnO-UREA-NLAU (b) CuO-ZnO-UREA-ACCI e CuO-ZnO-UREA-NLAU.




Tabela 1. Propriedades texturais do catalisador

Catalisador	D _{Cu} (%)	$S_{Cu0}(m^2/g_{cat})$
CuO-ZnO-UREA	24	4
CuO-ZnO-UREA- ACCI	51	2
CuO-ZnO-UREA- CTAB	30	6
CuO-ZnO-UREA- NLA	32	6

A Figura 4 exibe o desempenho catalítico dos materiais estudados. Conforme apresentado na Figura 4a e 4b, os óxidos sintetizados com ureia apresentaram maiores conversões de CO₂ e produtividades a metanol que o óxido sintetizado com bicarbonato de sódio. Kamsuwan et al. [17] relataram resultados semelhantes para o óxido misto de CuO-ZnO-Al₂O₃ sintetizado por coprecipitação usando bicarbonato de sódio. Esse comportamento pode estar associado à diferença na velocidade de precipitação promovida pelos distintos agentes precipitantes utilizados. A hidrólise do bicarbonato de sódio ocorre de maneira rápida, levando a uma precipitação acelerada e ao subsequente empacotamento das nanopartículas, como evidenciado pelas micrografías de microscopia eletrônica de varredura do catalisador CuO-ZnO-BiNa-72C (Figura 2). Em contraste, a hidrólise da ureia é um processo mais lento e gradual, que demanda condições específicas de pressão e temperatura. Neste processo, a formação da hidrozincita metaestável se dá de forma mais controlada, favorecendo uma dispersão metálica mais homogênea. Essa melhora na dispersão pode ser favorecida quando compostos orgânicos interagem em solução com os íons metálicos [14], contribuindo para o controle do processo de precipitação, como sugerem os dados de passivação com N2O apresentados na Tabela 1. O uso do ácido cítrico não demonstrou impacto significativo no desempenho catalítico do óxido gerado, enquanto os surfactantes CTAB e NLAU promoveram uma leve melhora na atividade catalítica, com o efeito do NLAU sendo mais proeminente.

Figura 4. Desempenho catalítico dos diferentes óxidos: CuO-ZnO-BiNa, CuO-ZnO-UREA, CuO-ZnO-UREA-ACC, CuO-ZnO-UREA-CTAB e CuO-ZnO-UREA-NLAU.

Conclusões

Os resultados mostram que durante a síntese de catalisadores de CuZn, a mecânica de precipitação é fundamental para definir as propriedades estruturais e catalíticas do material. O uso de ureia como agente precipitante, combinado com surfactantes orgânicos, promove a formação de fases precursoras mais uniformes, mais bem dispersos e morfologia homogênea. Essas características favorecem uma maior dispersão da fase ativa, o que resulta em um melhor desempenho, devido à melhor acessibilidade e interação dos sítios ativos com o CO₂.

Agradecimentos

Os autores agradecem o apoio financeiro do Instituto Nacional de Ciência e Tecnologia – INCT CAPICUA; do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, bolsas nº 151264/2023-6 e nº 153711/2024-8); da Agência Nacional do Petróleo, Gás

Natural e Biocombustíveis (ANP); da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); e do Ministério da Ciência, Tecnologia e Inovações (MCTI), por meio do Programa de Recursos Humanos da ANP para o Setor de Biocombustíveis (PRH-39.1 ANP/FAPESP, bolsas nº 2024/10494-5 e nº 2024/11446-4); da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, bolsa nº 2021/12394-0).

Referências

- [1] I.E.A. International Energy Agency, Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser/acessado em: 15/05/2025.
- [2] Olah, G. A. Angewandte Chemie International Edition **2005**, 44(18), 2636–2639.
- [3] IPCC Intergovernmental Panel on Climate Change. **2007**, v. 52, n. 1-43, p. 1.
- [4] Fischer, H., Wahlen, M., Smith, J., Mastroianni, D., Deck, B. 1999, Science, 283(5408), 1712-1714.
- [5] Crabtree, R. H. 1995, Chemical Reviews, 95(4), 987-1007
- [6] Goeppert, A.; Czaun, M.; Jones, J.-P.; Prakash, G. K. S.; Olah, G. A. 2014, Chemical Society Reviews, 43(23), 7995–8048.
- [7] Sehested, J. **2019**, Journal of Catalysis, 371, 368–375.
- [8] Methanol Institute. https://www.methanol.org/about-methanol/acessado em: 15/05/2025.
- [9] De Klerk, A. **2015**, Energy Science & Engineering, 3(1), 60–70.
- [10] Sohrabi, M.; Vafajoo, L. **2009**, World Applied Sciences Journal, 6, 339-346.
- [11] Bowker, M. **2019**, ChemCatChem, 11(17), 4238–4246.
- [12] Kanuri, S.; Roy, S.; Chakraborty, C.; Datta, S. P.; Singh, S. A.; Dinda, S. **2022**, International Journal of Energy Research, 46(5), 5503–5522.
- [13] Liang, B.; Ma, J.; Su, X.; Yang, C.; Duan, H.; Zhou, H.; Huang, Y. **2019**. Industrial & Engineering Chemistry Research, 58(21), 9030-9037.
- [14] X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, 2022, J. Mater. Chem. 21, 349–356.
- [15] M. Behrens; F. Girgsdies, 2010, Z Anorg Allg Chem 636, 919–927.
- [16] C.S. Santana, L.F. Rasteiro, F.C.F. Marcos, E.M. Assaf, J.F. Gomes, J.M. Assaf, 2022, Molecular Catalysis 528, 112512.
- [17] T. Kamsuwan, C. Krutpijit, S. Praserthdam, S. Phatanasri, B. Jongsomjit, P. Praserthdam, 2021, Heliyon 7, 7.