

Estudo comparativo de tratamentos alcalinos em alfa-espodumênio para síntese sustentável de zeólita A

Maria Clara Sewaybricker Leite¹ (IC), Leonardo Leandro dos Santos² (PG), Sibele Berenice Castellã Pergher² (PQ), Ana Paula de Carvalho Teixeira¹ (PQ)

Email: anapct@ufmg.br

¹Universidade Federal de Minas Gerais (UFMG), Grupo de Tecnologias Ambientais (GRUTAM) – Av. Pres. Antônio Carlos 6627, 31.270-901, Belo Horizonte - MG – Brasil.

²Universidade Federal de Rio Grande do Norte (UFRN), Laboratório de Peneiras Moleculares (LABPEMOL) – IQ 2, Av, Senador Salgado Filho 3000, 59.078-970, Natal - RN – Brasil.

Resumo/Abstract

RESUMO - Este trabalho investigou o uso do alfa-espodumênio como fonte alternativa de silício para síntese da zeólita A, valorizando um mineral abundante e promovendo seu aproveitamento sustentável. Foram avaliadas duas rotas de solubilização: digestão e fusão alcalina, com variações de temperatura, tempo e concentração de NaOH, otimizadas por planejamentos Fatorial e Box-Behnken. A análise por difração de raios X indicou maior conversão do espodumênio com fusão a 626 °C e 3,3 g de NaOH. Nos materiais da digestão, observou-se redução da cristalinidade, sugerindo maior reatividade. A zeólita A sintetizada apresentou estrutura compatível com os padrões da IZA, apesar de conter traços do mineral original. Os resultados indicam o potencial do alfa-espodumênio como precursor de zeólitas, com possibilidade de recuperação simultânea de lítio e geração de materiais de alto valor agregado.

Palavras-chave: Zeólita A, Alfa-espodumênio, Digestão alcalina, Fusão alcalina, Planejamento Box-Behnken

ABSTRACT - This study explored alpha-spodumene as an alternative silicon source for synthesizing zeolite A, aiming to add value to an abundant mineral and support the sustainable use of lithium-bearing materials. Two solubilization routes were tested: alkaline digestion and alkaline fusion, with variations in temperature, time, and NaOH concentration, optimized using Factorial and Box-Behnken designs. X-ray diffraction assessed phase transformations and amorphous silica availability. The best spodumene conversion occurred via fusion at 626 °C with 3.3 g of NaOH. Digestion led to a reduction in crystallinity, suggesting increased reactivity. The synthesized zeolite A matched IZA structural standards, though traces of unconverted spodumene remained. Results highlight the potential of alpha-spodumene as a zeolite precursor and suggest new possibilities for concurrent lithium recovery and production of high-value materials.

Keywords: Zeolite A, Alpha-spodumene, Alkaline digestion, Alkaline fusion, Box-Behnken Design

Introdução

As zeólitas constituem uma família de materiais microporosos cristalinos compostos por estruturas de aluminossilicatos tridimensionais. Devido à sua elevada área superficial, seletividade molecular e capacidade de troca iônica, encontram aplicações amplas em catálise heterogênea, purificação de gases, adsorção seletiva e processos de refino petroquímico. Entre as diversas estruturas zeolíticas, a zeólita A (LTA – Linde Type A) destaca-se por seu uso em processos de troca iônica e como agente dessecante. (1)

A obtenção de zeólitas sintéticas normalmente envolve fontes comerciais de sílica e alumina, o que eleva o custo do processo. (2) Por isso, busca-se continuamente alternativas mais sustentáveis e economicamente viáveis, que incluam a reutilização de resíduos industriais ricos em sílica e alumínio. Nesse contexto, o espodumênio – um silicato de alumínio e lítio (LiAlSi₂O₆) – emerge como uma alternativa

promissora. (3) Após beneficiamento, o espodumênio é comumente descartado ou pouco aproveitado, mesmo sendo uma importante fonte de lítio, elemento estratégico para a transição energética global. (4)

O espodumênio ocorre naturalmente em três formas polimórficas: alfa (monoclínica, estável a alta temperatura), beta (tetragonal, metaestável) e γ (instável, raramente reportada). A conversão entre essas fases e a reatividade do mineral frente a reagentes alcalinos estão diretamente relacionadas à estrutura cristalina. A forma alfa, mais comum no mineral bruto e em alguns rejeitos industriais, é também a menos reativa, o que exige tratamentos agressivos para torná-la solúvel. (5)

Dois métodos predominam na literatura para o ataque do espodumênio: fusão alcalina e digestão alcalina. A fusão alcalina consiste em aquecer o mineral com um sal de sódio em altas temperaturas, para promover a quebra das ligações Si–O e Al–O e a conversão da sílica cristalina em formas amorfas ou mais reativas. Já a digestão alcalina ocorre em

meio líquido, sob aquecimento e refluxo, sendo uma abordagem menos intensiva em energia, porém mais demorada. A escolha entre os métodos depende das condições operacionais e da eficiência na liberação dos constituintes desejados.

Para sistematizar a investigação e comparar os tratamentos, modelos estatísticos conseguem otimizar os experimentos para avaliar o real efeito de cada parâmetro de da relação entre eles. Planejamento fatorial envolve a combinação de todos os parâmetros testados, combinando seus níveis um a um. Já a ferramenta estatística de experimentos do tipo Box-Behnken Design (BBD) permite avaliar a influência de múltiplos parâmetros com um número reduzido de ensaios, escolhendo somente os níveis mais baixo, intermediário e mais alto. O objetivo principal deste trabalho é, portanto, estudar e otimizar – aplicando os planejamentos estatísticos de experimentos – os tratamentos alcalinos do espodumênio visando à síntese da zeólita A e, então, estabelecendo uma rota alternativa para o aproveitamento do mineral.

Experimental

Caracterização do alfa-espodumênio.

A amostra de alfa-espodumênio foi gentilmente cedida por uma mineradora sediada em Minas Gerais. A caracterização mineralógica foi realizada por difração de raios X (DRX), microscopia eletrônica de varredura (MEV) e fluorescência de raios X (FRX). Os resultados de DRX foram catalogados com dados cristalográficos da literatura.

Fusão alcalina.

Para a fusão alcalina, realizou-se um planejamento fatorial 3², com variação da temperatura (500, 600 e 700°C) e da massa de NaOH (1,1; 2,2; 3,3g). Portanto, foram testadas 9 condições de tratamento. A massa de espodumênio foi fixada em 2,5g, e 5 mL de água deionizada foram adicionados para hidratar a mistura. Após secagem a 90°C por 48h, os cadinhos foram levados à mufla com aquecimento a 5°C.min⁻¹ até a temperatura final. A caracterização posterior por DRX buscou identificar a diminuição das intensidades relativas ao pico característico do espodumênio em $2\theta \cong 32^\circ$. O modelo estatístico foi ajustado no software R, e a função obtida foi maximizada para identificar as melhores condições de fusão.

Digestão alcalina.

Foram testadas 15 condições de digestão definidas pelo planejamento Box-Behnken (BBD), com variação de três fatores: concentração de NaOH (1, 2, 3 mol.L⁻¹), temperatura (70, 90, 110°C) e tempo (1, 24, 72h). Utilizouse 3,0g de espodumênio, 0,7g de NaOH e volume de água ajustado para cada concentração. O sistema foi submetido a refluxo com aquecimento em banho de óleo de silicone. As

amostras foram analisadas por DRX e submetidas ao mesmo tratamento estatístico aplicado na fusão.

Síntese da zeólita LTA a partir do material da digestão.

A sílica obtida da digestão foi combinada a uma solução de aluminato para formar o gel de síntese. A mistura foi levada a reator hidrotérmico a 90°C por 4h. Após lavagem e secagem, os produtos foram caracterizados por DRX para confirmação inicial da formação da zeólita tipo A.

Resultados e Discussão

A caracterização inicial do mineral utilizado confirmou a presença majoritária de alfa-espodumênio e quartzo, conforme indicado no difratograma da **Figura 1**. A identificação das fases foi feita com base nas fichas cristalográficas da literatura, evidenciando a baixa reatividade da amostra, devido à alta cristalinidade do espodumênio na forma alfa.

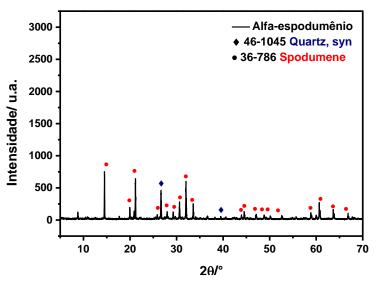


Figura 1. Difratograma do alfa-espodumênio.

Nos experimentos de fusão alcalina, foi possível observar mudanças significativas na estrutura cristalina do material tratado. Os difratogramas resultantes, apresentados nas **Figuras 2**, **3** e **4**, revelaram a formação de novas fases em função do aumento da concentração de NaOH, especialmente nos ensaios com 2,2g e 3,3g.

Dentre as fases identificadas nos difratogramas das amostras do tratamento alcalino, estão a haloisita, um argilomineral de estrutura tubular constituído por silicato de alumínio hidratado, (6) e o aluminossilicato de sódio, ambos indicativos de conversão parcial da sílica cristalina em formas mais reativas. A presença dessas fases sugere que a fusão alcalina não apenas promoveu a quebra da estrutura original do espodumênio, mas também resultou na formação de produtos que podem atuar como precursores mais eficientes para a síntese da zeólita A.

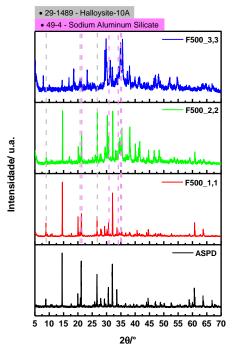
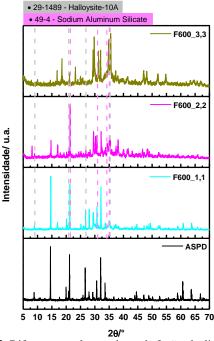



Figura 2. Difratograma dos produtos da fusão alcalina a 500°C.

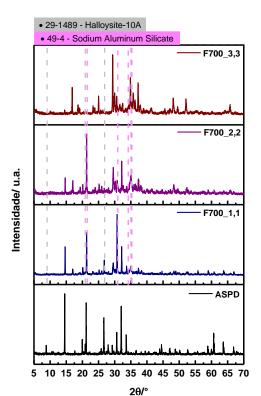


Figura 3. Difratograma dos produtos da fusão alcalina a 600°C.

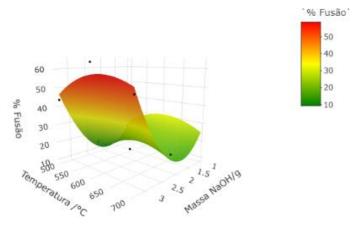
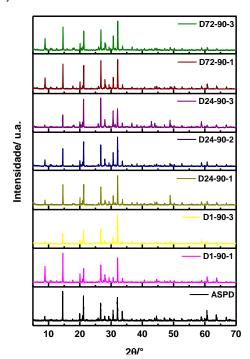
Tabela 1. Condições da função maximizada dos pontos de fusão alcalina

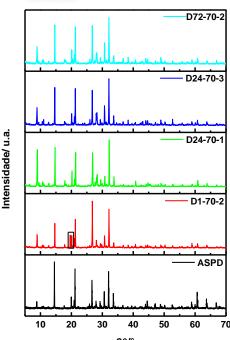
Temperatura / °C	Massa de NaOH/ g	Previsão de fusão/ %
626,53	3,3	58,73

Figura 4. Difratograma dos produtos da fusão alcalina a 700°C.

No entanto, para fins de análise quantitativa do processo de fusão, considerou-se apenas as intensidades dos picos característicos do espodumênio, relativas ao principal pico, presente em $2\theta \cong 32^\circ$, desconsiderando os picos das novas fases formadas. Essa escolha metodológica permite quantificar de forma objetiva a conversão da fase inicial. O ajuste da função de resposta foi realizado com auxílio do software R, sendo aplicada a equação gerada pelo planejamento estatístico para obtenção da condição ótima. A função modelada permitiu prever a condição de máxima eficiência de fusão, conforme apresentada na **Tabela 1**, sendo o ponto F626/3,3 (fusão a 626°C com 3,3g de NaOH) o que apresentou maior conversão do espodumênio em fases de sílica mais amorfas.

A análise da malha tridimensional da função ajustada (**Figura 5**) permitiu compreender com maior profundidade o comportamento do sistema frente às variáveis. Foi possível notar que o aumento da concentração de NaOH teve um efeito diretamente proporcional na conversão do espodumênio, com comportamento linear crescente ao longo dos níveis testados. Já a temperatura apresentou uma resposta não linear, com um pico de eficiência no nível intermediário (cerca de 600–650°C), indicando que temperaturas muito altas podem não ser benéficas devido à formação de fases menos desejáveis ou à recristalização de parte do material.


Figura 5. Gráfico 3D para a fusão alcalina.

Com relação aos testes de digestão alcalina, os difratogramas obtidos (Figuras 6, 7 e 8) não evidenciaram a formação de novas fases cristalinas. A ausência de picos adicionais pode indicar que, diferentemente da fusão, a digestão promove a alteração estrutural por mecanismos que não envolvem a formação de compostos cristalinos intermediários, ou até que a digestão apresenta menor efetividade no tratamento do mineral. Ainda assim, a diminuição da intensidade dos picos do espodumênio e o achatamento da linha de base do difratograma indicam a redução na cristalinidade do material, o que pode estar relacionado à sua maior reatividade, em termos de sílica amorfa disponível. Este comportamento é particularmente desejável para a aplicação na síntese de zeólitas, pois a presença de sílica amorfa favorece os processos de nucleação e crescimento da estrutura LTA.

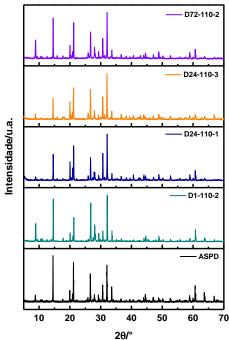
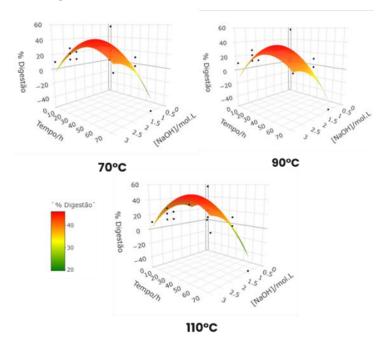


Figura 6. Difratogramas para os materiais da digestão alcalina do alfa-espodumênio a 70°C.

Pigura 7. Difratogramas para os materiais da digestão alcalina do alfa-espodumênio a 90°C.

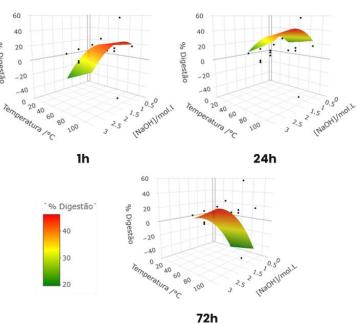
Figura 8. Difratogramas para os materiais da digestão alcalina do alfa-espodumênio a 110°C.

De maneira análoga à fusão, os dados obtidos foram ajustados ao modelo estatístico Box-Behnken, e três condições de digestão foram identificadas como ótimas, cada uma com um parâmetro fixo (tempo, temperatura ou concentração), o que se deve à limitação do modelo a apenas três dimensões. Para escolha da melhor condição prática, optou-se por uma abordagem econômica, priorizando a condição com menor tempo de reação e maior concentração



de NaOH (2,35 mol.L⁻¹ por 24h a 110°C), visando maximizar a conversão com o menor custo energético e operacional (**Tabela 2**). Esta condição foi denominada D24/110/2,35 (digestão alcalina por 24h, a 110°C com 2,35mol.L⁻¹ de NaOH).

Tabela 2. Condições da função maximizada dos pontos de fusão alcalina


Parâmetro fixo	T/°C	Tempo /h	Concentração /mol.L ⁻¹	Previsão Digestão/ %
Temperatura	110	35,78	2,35	48,37
Tempo	110	24	2,10	43,18
Concentração	110	31,43	2	47,10

A função estatística foi também utilizada para gerar gráficos tridimensionais com malhas de resposta (**Figuras 9, 10 e 11**), que permitem avaliar o impacto de cada parâmetro isoladamente. Como resultado da digestão D24/110/2,35, o material foi submetido à caracterização e utilizado na síntese da zeólita A. O conjunto de difratogramas da matéria-prima, material digerido, zeólita padrão e zeólita obtida a partir da digestão está representado na **Figura 12**.

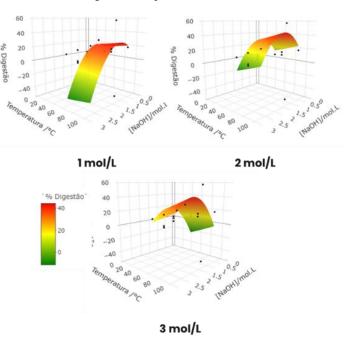


Figura 9. Gráficos 3D para as funções da digestão alcalina por Box-Behnken Design, com temperaturas fixas.

Figura 10. Gráficos 3D para as funções da digestão alcalina por Box-Behnken Design, com tempos fixos.

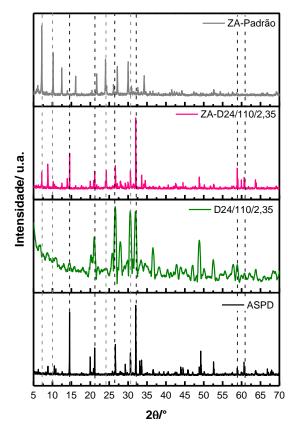


Figura 11. Gráficos 3D para as funções da digestão alcalina por Box-Behnken Design, com concentrações fixas.

A análise da **Figura 12** permite várias observações importantes. Primeiramente, o material digerido apresenta uma linha de base mais ampla e irregular, o que evidencia a presença de fases amorfas. Isso está alinhado com a hipótese de que o tratamento alcalino promoveu a destruição parcial da matriz cristalina do espodumênio, tornando o material mais apto à síntese zeolítica. Em segundo lugar, ao

comparar os difratogramas da zeólita padrão e da zeólita sintetizada a partir do espodumênio, nota-se a presença dos picos característicos da zeólita A, conforme definidos pela International Zeolite Association (IZA), embora em menor intensidade. Simultaneamente, são ainda observados picos remanescentes da fase de espodumênio, sugerindo que a conversão não foi completa.

Figura 12. Difratogramas para o alfa-espodumênio, a zeólita A padrão, a digestão alcalina D24/110/2,35 e a zeólita A ZA-D24/100/2,35

Esses achados indicam que, embora a metodologia de digestão tenha promovido uma conversão parcial eficaz, o processo de síntese da zeólita necessita de ajustes adicionais, principalmente nos parâmetros de tempo, temperatura e composição do gel de síntese, com o intuito de favorecer a nucleação da fase LTA e suprimir a presença residual de espodumênio.

Além disso, destaca-se a relevância de futuros estudos focarem na distribuição do lítio durante os tratamentos e a síntese. A identificação das fases em que o lítio permanece (se na matriz da zeólita, em fases amorfas ou em resíduos insolúveis) é crucial para o desenvolvimento de rotas integradas de síntese de zeólitas e recuperação do lítio, agregando valor tecnológico e ambiental ao processo.

Conclusões

Os resultados obtidos demonstram que tanto a fusão quanto a digestão alcalina são capazes de modificar a estrutura cristalina do alfa-espodumênio e torná-lo uma fonte viável de sílica para a síntese da zeólita A. A fusão se mostrou mais eficaz na transformação mineralógica, enquanto a digestão apresentou maior simplicidade operacional. A síntese da zeólita A a partir desses materiais é viável, embora a presença residual do espodumênio exija etapas de otimização. Futuramente, será fundamental analisar a distribuição e recuperação do lítio nas diferentes fases geradas, visando estabelecer um processo integrado para produção de zeólita.

Agradecimentos

Grupo de Tecnologias Ambientais (GruTAm), Laboratório de Peneiras Moleculares (Labpemol), Departamento de Química da UFMG, Instituto de Química da UFRN, INCT Midas, CNPq, Fapemig, Capes e demais agências de fomento que contribuíram para a realização do trabalho.

Referências

- MARTINS, A. S. et al. Aplicação de rejeitos do beneficiamento do lítio na síntese de zeólitas do tipo LTA. Revista Matéria, Rio de Janeiro, v. 27, n. 3, p. e12435, 2022.
- SILVA, F. H. Síntese, caracterizações e aplicações de zeólitas: uma revisão bibliográfica. 2022. TCC (Graduação em Engenharia Química) – Universidade Tecnológica Federal do Paraná, Curitiba.
- 3. BIESEKI, L. et al. **Síntese de zeólitas utilizando** resíduo sílico-aluminoso proveniente do processo de extração de lítio. *Cerâmica*, São Paulo, v. 59, n. 349, p. 15–21, 2013.
- MENEZES, R. R. et al. Síntese de zeólitas a partir de minerais litiníferos: uma alternativa sustentável para o reaproveitamento de resíduos industriais. Química Nova, São Paulo, v. 41, n. 8, p. 914–922, 2018.
- 5. SANTOS, L. L. et al. Valorização da cadeia produtiva do lítio: alternativas sustentáveis para extração de lítio do espodumênio. 169p. 2020.
- OLIVEIRA, C. H.; LUZ, A. B. Argila-Bentonita. In: LINS, F. A. F.; AÇÃO, A. D. (org.). Rochas e Minerais Industriais: usos e especificações. 2. ed. Rio de Janeiro: CETEM, 2005. p. 239–255.