

Espectroscopia Raman *Operando* e Insights de XAS sobre Catalisadores Ni/CeO₂ Ricos em Vacâncias de Oxigênio para Metanação de CO₂

Lucas da Silva Ricci^{1*}, Luiz Gustavo Possato¹.

lucas.ricci@unesp.br, UNESP, Faculdade de Ciências de Bauru, Departamento de Química¹.

Resumo/Abstract

RESUMO – Catalisadores Ni/CeO₂ foram sintetizados por diferentes métodos para investigar vacâncias de oxigênio e interações metal-suporte. A amostra Ni/CeO₂-S (mistura seca) apresentou maior tamanho de cristalito (12,9 nm), menor área superficial (44 m²/g) e menor grau de desordem estrutural. Já Ni/CeO₂ e Ni/CeO₂-CTAB (coprecipitação com/sem CTAB) apresentaram cristalitos menores (9,1 e 8,5 nm), maior desordem e vacâncias, além de maiores concentrações de Ni³+ e Ce³+ (XPS), indicando interações Ni–Ce mais intensas. Raman e XPS confirmaram essas diferenças. Na metanação de CO₂, Ni/CeO₂-CTAB obteve maior conversão (92%) e seletividade. Análises *operando* por XAS e PCA/MCR-ALS revelaram espécies Ni²+, Ni⁰ e Ni⁵+, predominante nos coprecipitados. EXAFS e PCA mostraram maior redutibilidade e interação Ni–Ce para Ni/CeO₂-CTAB. Raman *operando* indicou redução do Ce com deslocamento do modo F₂g (461 → 451 cm⁻¹), surgimento de ombro a 480 cm⁻¹ com o modo de vacância (600 cm⁻¹) mais nítido. A estrutura se estabiliza a 300 °C nas amostras coprecipitadas, mas varia continuamente em Ni/CeO₂-S, refletindo sua instabilidade estrutural.

Palavras-chave: espectroscopia operando, XAS, Raman, redução de CO2, níquel.

ABSTRACT - Ni/CeO₂ catalysts were synthesized via different methods to investigate oxygen vacancy density and metal-support interactions. The Ni/CeO₂-S sample (dry mixing) exhibited a larger crystallite size (12.9 nm), lower specific surface area (44 m²/g), and a lower degree of structural disorder. In contrast, Ni/CeO₂ and Ni/CeO₂-CTAB (coprecipitation with/without CTAB) showed smaller crystallite sizes (9.1 and 8.5 nm), increased disorder and vacancy concentration, along with higher surface Ni³+ and Ce³+ contents (XPS), indicating stronger Ni–Ce interactions. These structural differences were corroborated by Raman spectroscopy and XPS. In CO₂ methanation, Ni/CeO₂-CTAB achieved the highest CO₂ conversion (92%) and CH₄ selectivity. *Operando* XAS and PCA/MCR-ALS analysis identified the presence of Ni²+, Ni⁰, and Ni⁵+, which was more prevalent in the coprecipitated samples. EXAFS and PCA revealed higher reducibility and stronger Ni–Ce interaction in Ni/CeO₂-CTAB. *Operando* Raman spectroscopy indicated Ce reduction, with a shift of the F₂g mode (461 \rightarrow 451 cm⁻¹), shoulder formation at ~480 cm⁻¹, and enhanced intensity of the oxygen vacancy-related band (~600 cm⁻¹). The structure stabilized at ~300 °C for the co-precipitated samples, while Ni/CeO₂-S exhibited continuous variation, reflecting greater structural instability.

Keywords: operando spectroscopy, XAS, Raman, CO2 reduction, nickel.

Introdução

A crescente concentração de CO2 na atmosfera, causada por atividades humanas como queima de combustíveis fósseis e desmatamento, é uma das principais responsáveis pela crise climática, provocando aquecimento global, derretimento de geleiras, elevação do nível do mar, perda de biodiversidade e acidificação dos oceanos. Nesse contexto, a conversão de CO2 em produtos de valor agregado, como o metano (CH₄), surge como uma estratégia promissora para mitigar impactos ambientais, sobretudo quando associada ao uso de energia renovável e hidrogênio verde (1). A reação de metanação do CO₂, conhecida como reação de Sabatier, é exergônica e requer catalisadores eficientes. Catalisadores à base de Ni suportados em CeO2 têm se destacado devido à forte interação metal-suporte e à habilidade do cério em alternar entre Ce4+/Ce3+, formando vacâncias de oxigênio. Essas vacâncias são cruciais para a ativação do CO₂ e o

desempenho catalítico, promovendo mecanismos redox e associativos simultâneos (2). A engenharia de defeitos na estrutura do CeO₂ melhora a atividade, estabilidade e seletividade dos catalisadores. Técnicas operando como Raman e XAS foram utilizadas para acompanhar as mudanças estruturais e eletrônicas em tempo real, evidenciando a importância da presença de Ni⁰ estável e da ciclagem redox do Ce⁴⁺/Ce³⁺. Para intensificar vacâncias e interações Ni–Ce, os catalisadores foram sintetizados via coprecipitação com CTAB, controlando morfologia, área superficial e densidade de defeitos.

Experimental.

Os catalisadores foram sintetizados baseado no trabalho de Luo *et al* (3) com certas mudanças. Os catalisadores foram preparados com a adição e sem adição de CTAB. Com a adição brometo de cetiltrimetilamônio (CTAB;

6mmol, Sigma-Aldrich ≥ 98%) foi dissolvido em 200 mL de água destilada, seguido pela adição de Ce(NO₃)₃ 6H₂O (9.5 mmol, Sigma-Aldrich 99%) e Ni(NO₃)₂·6H₂O (5 mmol, Sigma-Aldrich ≥ 98%). A mistura foi agitada por 2 horas, então a solução de hidróxido de sódio (50 mmol, Sigma-Aldrich ≥ 98%) em 300 mL de água destilada foi adicionado e agitado por 12 horas. O precipitado final foi envelhecido a 80 °C por 3 horas, lavado com água quente (80 °C) 3 vezes, e seco a 80 °C por 24 horas. O precipitado seco foi calcinado à 450 °C por 4 horas em mufla sob condições atmosféricas com uma rampa de 3 °C/min. O catalisador sintetizado com adição de CTAB recebeu o sufixo -CTAB. A amostra padrão obtida pela mistura dos nitratos de níquel e cério recebeu o sufixo -S.

As propriedades estruturais dos catalisadores foram caracterizadas por DRX utilizando um difratômetro Bruker D8 Advance Eco (radiação Cu Kα), com geometria Bragg-Brentano. O refinamento de Rietveld foi conduzido com o software MAUD, utilizando função pseudo-Voigt e polinômio de Chebyshev de sexto grau para o fundo. A área superficial foi obtida por fisissorção de N₂ em -190 °C com sistema Micromeritics ASAP 2020, calculada pela equação BET, após degasificação a 200 °C por 12 h.

Espectros Raman foram obtidos com laser de 532 nm (30 mW), com tempo de integração de 5 minutos e média de 3 espectros. Os modos vibracionais dos espectros Raman foram deconvoluídos utilizando o software Fityk. Análises de XPS foram feitas na linha IPE do síncrotron Sirius, com espectrômetro SPECS Phoibos 150, analisando Ni 2p3/2 e Ce 3d com perfis Voigt deconvoluídos (GL(30)). Dados de XPS foram analisados com CasaXPS, usando função de Shirley e perfis de Voigt; calibração feita com Au 4f7/2 e FWHM entre 1,5-2,2 eV.

A TPR-H₂ foi realizada com 100 mg de catalisador em reator de quartzo, pré-tratado com N₂ a 200 °C, seguido de redução até 950 °C com 10% H₂/N₂. O consumo de H₂ foi monitorado via TCD.

Espectros XAS operando foram obtidos na linha ROCK do síncrotron SOLEIL (K-edge Ni e L3-edge Ce) em modo de transmissão, usando Quick-EXAFS com frequência de 2 Hz. Os dados foram normalizados com interface Python normal_gui. A análise por MCR-ALS permitiu decompor a matriz espectral D em espectros puros e suas concentrações (C, S¹), impondo restrições físico-químicas como não negatividade. A decomposição inicial utilizou SVD para estimar o número de componentes químicos relevantes, com base na análise dos autovalores.

As transformadas de Fourier dos dados EXAFS (região $k = 4,2-10,3 \text{ Å}^{-1}$) foram analisadas com o software Artemis, utilizando ponderação k^3 e janelas Kaiser-Bessel, para extração de número de coordenação, distância interatômica e fator de Debye-Waller.

As análises Raman operando foram feitas na mesma linha de luz do XAS com excitação em 532 nm, utilizando

capilares de quartzo e espectrômetro acoplado a um sistema de alimentação de gases. O aquecimento foi feito com rampa de 5 °C/min até 400 °C e reação iniciada a 300 °C com CO₂:H₂ (1:4).

A metanação de CO_2 foi testada em reator de leito fixo com 100 mg de catalisador, ativado a $400 \,^{\circ}\text{C}$ em H_2 por 1 h. A reação foi conduzida a $300 \,^{\circ}\text{C}$, 1 atm, com H_2 : $CO_2 = 4:1$, monitorada por cromatografía gasosa. A conversão de CO_2 e a seletividade dos produtos foram calculadas com base nas equações de balanço molar. Nenhum composto adicional foi detectado.

Resultados e Discussão

Para investigar a estrutura cristalina, utilizou-se difração de raios X (DRX) nas amostras sintetizadas, evidenciando picos intensos nas reflexões (111) e (220), típicos da estrutura de fluorita do CeO₂ (Fig. 1). Os parâmetros cristalográficos foram obtidos por meio do refinamento de Rietveld. O aumento do parâmetro de rede e da microdeformação nas amostras obtidas por coprecipitação sugere uma maior interação entre Ni e Ce, possivelmente pela inserção do níquel em posições intersticiais na rede do cério, o que pode levar à formação de superestruturas do tipo Ni–O–Ce, promovendo a expansão da rede cristalina e gerando tensões locais (Tab. 1).

A síntese por coprecipitação também favoreceu a formação de cristalitos menores, com redução de 3,8 nm em comparação à amostra Ni/CeO₂-S, e redução adicional de 0,6 nm com a incorporação do surfactante CTAB.

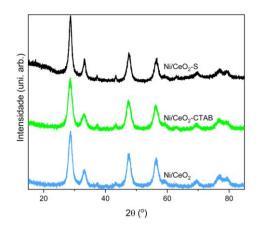
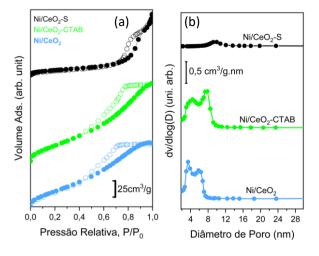



Figura 1. Difratogramas das amostras sintetizadas.

As isotermas de adsorção de N₂ das amostras coprecipitadas apresentaram histerese característica de mesoporos (Fig. 2), indicando uma estrutura superficial mais organizada e maior disponibilidade de sítios ativos. A análise dos dados de área superficial e distribuição de poros (Tab. 1) mostra que a coprecipitação promoveu a formação de superfícies mais definidas, com maior área específica

(média de 126,5 m²/g) e poros menores (~5 nm), sem variações significativas entre as amostras obtidas por esse método.

Figura 2. (a) Isotermas de fisissorção e (b) distribuição de poros das amostras.

Tabela 1. Parâmetros cristalográficos e texturais quantificados das amostras.

Amostras	Parâm. de Rede (Å)	Taman. de Crist. (nm)	Microd eforma ção ξ (x10 ⁻³)	S_{BET} (m^2/g)	Taman. Méd. de Poro BJH (nm)
Ni/CeO ₂ -S	5,3957	12,9	3,6	44	10,2
Ni/CeO ₂ - CTAB	5,4187	8,5	4,9	129	5,1
Ni/CeO ₂	5,4201	9,1	4,5	124	4,9

A espectroscopia Raman revelou mais características do bulk (Fig. 3). O pico F₂g em 465 cm⁻¹ de primeira ordem, referente à estrutura fluorita do cério se desloca para 460 cm⁻¹, indicando uma redução geral nos átomos do cério. A concentração dos defeitos localizados em 580 cm⁻¹ (referente à dopagem), em 600 cm⁻¹ (referente às vacâncias de oxigênio) e 635 cm⁻¹ (referente à formação de superestruturas) foi avaliada pela razão entre a intensidade dos picos de defeito e do modo F₂g (4). As amostras sintetizadas por coprecipitação apresentaram maior concentração de defeitos estruturais causados por vacâncias e interações Ni-Ce do que a mistura dos sais (Tab. 2).

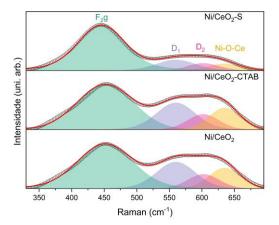


Figura 3. Espectro Raman quantificado das amostras.

No espectro do cério (Ce3d) os picos atribuídos ao Ce⁴⁺ (u^{III}, u^{II}, u, v^{III}, v^{II} e v) e ao Ce³⁺ (u^I, u⁰, v^I e v⁰), cujo picos de aumentam com a adição do surfactante, indicando a formação de mais vacâncias de oxigênio (Fig. 3) (5).

No espectro de níquel (Ni2p), 3 picos que correspondem ao sinal Ni2p_{3/2} são localizados em 854 eV, associado ao Ni²⁺ na forma de NiO, 855 eV, associado a diferentes espécies em ambiente mistos (Ni^{α +}), e 857,3 eV, associado ao Ni³⁺ interagindo fortemente com o suporte. Os sinais satélites estão localizados com uma distância em torno de 6.1 eV (6).

Há uma contribuição maior para o sinal do Ni³⁺ nas amostras sintetizadas via coprecipitação, com maior intensidade na amostra Ni/CeO₂-CTAB, onde a diminuição do tamanho do cristalito pode ter facilitado a exposição do Ni no interstício. A contribuição também é evidenciada na quantificação, onde Ni/CeO₂-CTAB obteve a maior concentração de Ni³⁺ (Tab. 2). As concentrações de Ce³⁺ evidenciam o perfil redutor da superficie, que aumenta com a adição de CTAB na síntese de coprecipitação. Ni/CeO₂-S apresenta maior concentração de Ce³⁺, mas pouca ordem superficial, podendo ser só sensibilidade às condições experimentais.

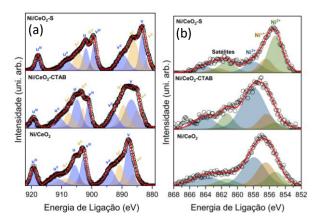


Figura 4. Regiões (a) Ce3d e (b) Ni2p das amostras.

Tabela 2. Fração das espécies de Ce, Ni e Raman das amostras.

Amostras	Ce ^{3+*}	Ni ^{3+*}	I_{D1}/I_{F2g}	I_{D2}/I_{F2g}	$I_{ ext{Ni-O-Ce}}/I_{ ext{F2g}}$
Ni/CeO ₂ -S	0,41	0,20	0,24	0,15	0,15
Ni/CeO ₂ - CTAB	0,37	0,73	0,59	0,31	0,46
Ni/CeO ₂	0,30	0,49	0,59	0,33	0,47

 ${\rm *Ce^{3+}}$ e ${\rm Ni^{3+}}$ são referentes à quantificação feita dos espectros Ce3d e Ni2p.

A redução à temperatura programada de hidrogênio com hidrogênio (H_2 -TPR) revelou diferentes estágios de redução. A região α (150–250 °C) corresponde à redução de espécies de oxigênio na superfície. Todos os catalisadores à base de Ni apresentaram dois picos semelhantes nessa faixa, indicando redutibilidade superficial comparável. A região β (250–360 °C) está relacionada à redução de NiO. A amostra Ni/CeO₂-S apresentou um pico em temperatura mais baixa, possivelmente devido à presença de partículas de NiO fracamente interagentes. Já a amostra Ni/CeO₂-CTAB apresentou dois picos (320 e 350 °C), indicando duas espécies de Ni: uma fracamente associada e outra fortemente interagindo com o suporte CeO₂. As regiões γ e σ (>400 °C) estão associadas à redução progressiva do CeO₂.

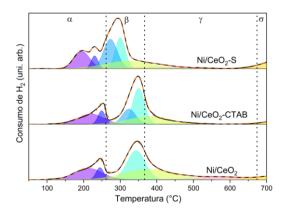
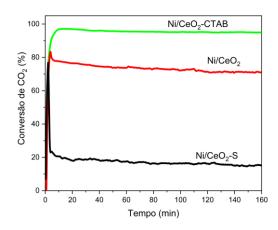
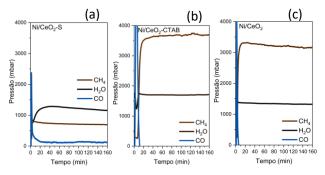


Figura 5. Redução à temperatura programada de hidrogênio.

Os perfis de conversão de CO₂ e as tendências de pressão dos produtos da metanação (CH₄, H₂O e CO) ao longo do tempo, obtidos por medidas de Raman *operando*, foram avaliados para os catalisadores Ni/CeO₂-S, Ni/CeO₂ e Ni/CeO₂-CTAB. Entre os catalisadores, o Ni/CeO₂-CTAB apresentou a maior conversão de CO₂, alcançando cerca de 95%, próximo ao equilíbrio termodinâmico nas condições reacionais aplicadas (Fig. 6).

A formação de metano foi significativamente superior às demais amostras e manteve-se estável durante toda a reação. O sinal de CO foi praticamente nulo, indicando excelente seletividade para metanação completa. Em contraste, o catalisador Ni/CeO₂ mostrou atividade moderada, com conversão de CO₂ entre 70-80%, porém com queda gradual ao longo do tempo e menor formação de CH₄. A amostra Ni/CeO₂-S teve o pior desempenho, com conversão abaixo de 40%, tendência de desativação, menor produção de CH₄ e presença significativa de CO, sugerindo baixa seletividade e instabilidade dos sítios ativos sob condições prolongadas de reação (Fig. 7).

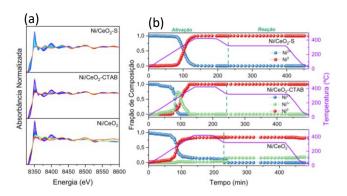

Figura 6. Conversão de CO2 das amostras.

Figura 7. Formação de CH₄ das amostras (a) Ni/CeO₂-S, (b) Ni/CeO₂-CTAB e (c) Ni/CeO₂.

A evolução das espécies de níquel e cério durante a ativação e reação catalítica foi monitorada por espectroscopia de absorção de raios X nas bordas Ni K e Ce L₃. Os espectros, processados por MCR-ALS, mostraram que a amostra Ni/CeO₂-S teve redução completa de Ni²⁺ (NiO) para Ni⁰ metálico a cerca de 400 °C. Em Ni/CeO₂, a redução foi incompleta, alcançando apenas 80% de Ni⁰, com formação de Ni^{δ+} a partir de 250 °C, atingindo 18% durante a reação — espécie atribuída à forte interação com o suporte e favorecida por agentes oxidantes (CO₂ e H₂O). Em Ni/CeO₂-CTAB, Ni^{δ+} apareceu como intermediário transitório com pico a 280 °C. A presença de CTAB modulou o tamanho das partículas de Ni, evitando formações muito grandes ou muito pequenas que dificultariam a redução completa (Fig. 8).

Figura 8. (a) Espectros de XAS *operando* na região do níquel e (b) especiação das amostras.

A análise por EXAFS também revelou que o metal Ni em folha padrão possui número de coordenação Ni–Ni de 12 a 2,48 Å, típico da estrutura cúbica compacta. Nos catalisadores suportados, esse valor diminui: 0,85 (Ni/CeO₂-S), 0,76 (Ni/CeO₂-CTAB) e 0,75 (Ni/CeO₂), indicando alta dispersão do Ni. Ni/CeO₂-S teve maior coordenação Ni–Ni e menor interação Ni–Ce (0,53), sugerindo fraca interação metal–suporte. Já Ni/CeO₂-CTAB teve maior interação Ni–

Ce (1,67), favorecendo a hidrogenação seletiva de CO_2 a CH_4 (Fig. 9).

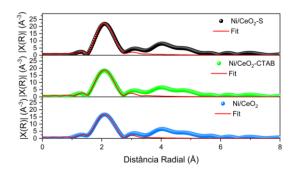
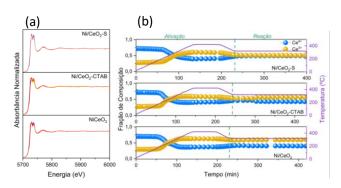



Figura 9. Transformadas de Fourier dos sinais de EXAFS das amostras após a reação em temperatura ambiente.

Para avaliar a transição Ce³+/Ce⁴+ em condições *operando*, foram realizadas análises por EXAFS durante ativação, redução e reação, considerando as distâncias características: Ce³+ (4,16 Å), Ce⁴+ (3,87 Å), Ni (2,88 Å) e O (2,33 Å). A razão Ce³+/Ce⁴+ foi obtida com base nos números de coordenação, multiplicados pelas tendências observadas por MCR-ALS. Durante a ativação, Ni/CeO₂-S atingiu 60% de Ce³+ a 400 °C, mas reoxidação parcial ocorreu ao resfriar. Em reação, Ce³+ e Ce⁴+ estabilizaram em 50%. Nas outras amostras, a proporção Ce³+/Ce⁴+ se manteve constante após 300 °C, com ~60% de Ce³+ e mais vacâncias. Uma leve queda de Ce³+ foi observada em Ni/CeO₂-CTAB, associada à maior atividade catalítica e à presença de H₂O.

Figura 10. (a) Espectros de XAS *operando* na região do cério e (b) especiação das amostras.

Utilizando a técnica de espectroscopia Raman em condições *operando*, foi possível monitorar as mudanças estruturais nas amostras sob condições reacionais reais. Todas as amostras apresentaram tendência semelhante de evolução estrutural. Nas etapas iniciais de aquecimento, até

cerca de 200 °C, o modo vibracional atribuído à interação Ni–O–Ce, localizado em 635 cm⁻¹, é gradualmente suprimido, enquanto o pico em 600 cm⁻¹, relacionado à presença de vacâncias de oxigênio, torna-se mais evidente. Simultaneamente, o modo F₂g do CeO₂, originalmente em 460 cm⁻¹, sofre um deslocamento para 450 cm⁻¹, indicando a redução do cério de Ce⁴⁺ para Ce³⁺. Esse modo também apresenta alargamento e amortecimento progressivos, característicos do aumento do grau de amorficidade da rede, com a possível formação de clusters octaédricos Ce³⁺O₈, evidenciado pela formação de um "ombro" próximo a 480 cm⁻¹, associados a vacâncias deslocalizadas.

Não foram observadas mudanças nas bandas na região de 1400–1600 cm⁻¹, relacionadas a estruturas carbonáceas tipo coque (bandas D e G), evidenciando a alta resistência à deposição de carbono das amostras. A ausência de coque mesmo na amostra Ni/CeO₂-S pode ser atribuída à sua menor atividade catalítica, o que limita a formação de intermediários carbonáceos.

A aplicação da análise MCR-ALS permitiu decompor a evolução espectral ao longo do tempo e revelou que as transformações estruturais Raman ativas ocorrem majoritariamente até 300 °C. A partir dessa temperatura, os espectros permanecem praticamente inalterados, o que indica uma elevada estabilidade estrutural em regime reacional. A amostra Ni/CeO₂-S, por apresentar menor organização estrutural e baixa concentração de vacâncias de oxigênio, possui capacidade reduzida de transferência de oxigênio. Isso pode dificultar uma redução homogênea do bulk, levando a reorganizações estruturais compensatórias durante a reação. Essas transições estruturais contínuas comprometem a estabilidade da rede e explicam a menor estabilidade catalítica observada para essa amostra ao longo do tempo de reação.

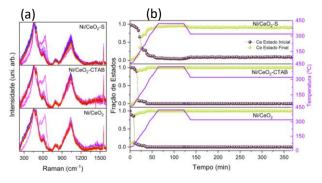


Figura 11. (a) Espectros Raman operando e (b) especiação das amostras.

Conclusões

Para aumentar a concentração de vacâncias de oxigênio no suporte de CeO₂ e promover interações mais fortes entre metal e suporte, os catalisadores foram sintetizados por

métodos de precipitação controlada com a adição do agente direcionador de estrutura CTAB (brometo de cetiltrimetilamônio). Essa estratégia visa controlar a morfologia, área superficial e densidade de defeitos da fase de cério, favorecendo a formação de sítios deficientes em oxigênio tanto durante a síntese quanto na ativação. A presença dessas vacâncias é fundamental para o desempenho catalítico, facilitando a ativação do CO₂ e melhorando a ciclagem redox do suporte durante a reação.

Para investigar as propriedades estruturais e eletrônicas dos catalisadores em condições reacionais, foram utilizadas as técnicas *operando* de espectroscopia de absorção de raios X (XAS) e espectroscopia Raman. A XAS nas bordas Ni K e Ce L₃ forneceu informações sobre os estados de oxidação e o ambiente de coordenação local do metal ativo e do suporte. Em especial, as regiões XANES e EXAFS da borda Ce L₃ permitiram monitorar a razão dinâmica Ce⁴⁺/Ce³⁺, refletindo diretamente a geração e estabilidade das vacâncias de oxigênio durante a ativação e a hidrogenação do CO2. Simultaneamente, o Raman operando forneceu informações complementares sobre a evolução estrutural da rede do CeO2, como a amorficidade, indicando defeitos deslocalizados (tipicamente observadas deslocamentos ou alargamentos do modo F2g). As amostras Ni/CeO₂ sintetizadas por coprecipitação sofrem mudanças estruturais até 300 °C, estabilizando-se após essa etapa. A amostra Ni/CeO2-S, com menos vacâncias de oxigênio e menor organização, apresenta instabilidade estrutural contínua durante a reação, o que compromete sua estabilidade catalítica. Não foi detectada formação de coque em nenhuma das amostras. Juntas, essas técnicas permitiram uma compreensão abrangente do comportamento redox, da química de defeitos e das relações estrutura-atividade nos catalisadores Ni/CeO₂ em condições realistas de reação.

Agradecimentos

À entidade financiadora FAPESP e aos docentes e discentes que tornaram a progressão do projeto possível.

Referências

- 1. L. G. Possato, *et al.* Applied Catalysis B. **2025**, 369, 125144.
- 2. S. Chen, et al. Applied Catalysis B. **2025**, 366, 125029.
- 3. M. Luo *et al.*, Journal of Catalysis. **2007**, 246, 52-59.
- 4. S. Loridant, Catalysis Today. **2021**, 373 98-111.
- 5. L. Atzori, *et al.* Frontiers of Chemical Science and Engineering. **2020**, 15, 251–268
- 6. E. L. Ratcliff, *et. al.* Chemistry of Materials. **2011**, 22, 4988-5000.