

PRODUÇÃO DE BIOCOMBUSTÍVEIS POR PIRÓLISE CATALÍTICA DE ÓLEO DE FRITURA COM HIDROXIAPATITA IMPREGNADA COM **NÍQUEL.**

Magno K. A. Sena^{1*}; Kauã F. de L. Couto¹; Lucas G. G. do Nascimento¹; Aruzza M. de M. Araújo¹; Carlos A. Martinez-Hiltle¹: Amanda D. Gondim¹.

¹Laboratório de Análises Ambientais Processamento Primário e Biocombustíveis (LABPROBIO-NUPPRAR), Universidade Federal do Rio Grande do Norte (UFRN), Campus Natal-RN – magnosena3@gmail.com*.

Resumo/Abstract

RESUMO - A queima de combustíveis fósseis causa impactos ambientais e sociais significativos, incentivando a busca por fontes renováveis de energia. A pirólise do óleo de fritura residual é uma alternativa viável para a produção de biocombustíveis. Neste trabalho, foram utilizados catalisadores de hidroxiapatita pura (HA) e hidroxiapatita impregnada com 10% de níquel (10% NiHA). As amostras foram caracterizadas por difração de raios X, espectroscopia vibracional na região do infravermelho por transformada de Fourier, fluorescência de raio X e análise termogravimétrica, que confirmaram a formação da fase desejada, estabilidade térmica e presença de grupos funcionais. A acidez foi determinada por dessorção de n-butilamina, com destaque para os sítios fortes: 0,3391 mmol/g (HA) e 0,3664 mmol/g (10% NiHA). A cinética foi avaliada pelos modelos de Ozawa-Flynn-Wall e Kissinger-Akahira-Sunose, com R² próximos de 1,0. A menor energia de ativação para 10% NiHA ocorreu com 60% de conversão com valores de 155 kJ/mol (OFW) e 175 kJ/mol (KAS). O rendimento de hidrocarbonetos C8-C16 alcancou 36%, superior às demais condições.

Palavras-chave:pirólise; óleo de fritura; estudo cinético; hidroxiapatita; biocombustíveis.

ABSTRACT - The combustion of fossil fuels causes significant environmental and social impacts, encouraging the search for renewable energy sources. The pyrolysis of residual frying oil is a viable alternative for biofuel production. In this study, pure hydroxyapatite (HA) and hydroxyapatite impregnated with 10% nickel (10%NiHA) were used as catalysts. The samples were characterized by X-ray diffraction, Fourier-transform infrared vibrational spectroscopy, X-ray fluorescence, and thermogravimetric analysis, which confirmed the formation of the desired phase, thermal stability, and the presence of functional groups. Acidity was determined by n-butylamine desorption, highlighting the strong acid sites: 0.3391 mmol/g for HA and 0.3664 mmol/g for 10%NiHA. Kinetics were evaluated using the Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose models, with R² values close to 1.0. The lowest activation energy for 10% NiHA occurred at 60% conversion, with values of 155 kJ/mol (OFW) and 175 kJ/mol (KAS). The C8-C16 hydrocarbon yield reached 36%, higher than the other conditions.

Keywords: pyrolysis; frying oil; kinetic study; hydroxyapatite; biofuels.

Introdução

Os impactos ambientais e sociais decorrentes da elevada emissão de gases de efeito estufa têm incentivado a comunidade científica a buscar fontes de energia mais sustentáveis e renováveis1. Nesse cenário, os lipídios naturais, compostos principalmente por triglicerídeos, destacam-se como matérias-primas importantes para a produção de biocombustíveis líquidos e de produtos químicos de alto valor agregado, por meio de processos termocatalíticos^{2,3}. Entre as alternativas disponíveis, os óleos residuais se apresentam como uma das mais relevantes, pois seu reaproveitamento na produção de combustíveis não compete com o setor alimentício e contribui significativamente para a redução dos impactos ambientais causados pelo descarte inadequado em rios, lagoas e efluentes. Além disso, sua reutilização pode diminuir os custos de tratamento de água e esgoto nas estações de tratamento que lidam com essa carga lipídica.

A pirólise catalítica envolve etapas fundamentais como desoxigenação, isomerização e aromatização. Dentre essas, a desoxigenação catalítica de lipídeos é essencial para aprimorar a qualidade e a estabilidade dos produtos obtidos 1. A análise cinética das reações de pirólise é uma ferramenta crucial para compreender a dinâmica reacional, permitindo identificar os catalisadores mais eficientes no processo de desoxigenação. Além disso, essa análise possibilita a determinação das energias de ativação (Ea) ao longo de todo o processo de conversão, sendo esses valores fundamentais para elucidar os mecanismos reacionais envolvidos³.

A comunidade científica tem se empenhado no desenvolvimento de catalisadores de desoxigenação que sejam simultaneamente eficientes e economicamente

viáveis. Os catalisadores metálicos convencionais, como os baseados em Pd, Pt, Ru e Rh, embora altamente eficazes, apresentam custos elevados, mesmo quando suportados em materiais de baixo custo como carbono, TiO₂, SiO₂, ZrO₂, Al₂O₃ e peneiras moleculares como as zeólitas². Diante disso, torna-se imprescindível a busca por alternativas mais sustentáveis, utilizando matérias-primas de menor custo e menor impacto ambiental para a síntese de catalisadores.

Nesse contexto, o uso de fontes alternativas de cálcio, como cascas de ovos, ossos e outros resíduos ricos nesse elemento, representa uma abordagem de baixo custo para a síntese de hidroxiapatita. Esse material pode ser obtido por meio de rotas sintéticas simples, com reduzida complexidade operacional, além de apresentar elevada versatilidade para modificações estruturais por impregnação com metais⁴. Diante disso, o presente trabalho tem como objetivo avaliar a síntese de hidroxiapatita a partir de cascas de ovos de galinha (Gallus gallus domesticus) e sua aplicação como catalisador na conversão termocatalítica de óleo residual de fritura via processo de pirólise. Pretende-se, ainda, analisar se os produtos obtidos se enquadram na faixa de hidrocarbonetos compatíveis com o combustível sustentável de aviação (SAF), bem como realizar o estudo cinético da reação entre o óleo residual e os catalisadores sintetizados.

Experimental

Síntese dos catalisadores

O catalisador de hidroxiapatita (HA) foi preparado conforme o procedimento descrito na por J. Dobosz e colaboradores⁵. Para obter o catalisador com 10 % em massa de níquel (10 %NiHA), a HA foi impregnada por umidade nitrato incipiente com solução de de hexahidratado (Ni(NO₃)₂·6H₂O) na proporção 10 % (m/m) Ni em relação ao suporte. Após a secagem, a amostra 10 %NiHA foi calcinada em ar estático com rampas de aquecimento de 5 °C min⁻¹ até 150 °C (1 h), 250 °C (2 h) e 550 °C (4 h).

Caracterização dos catalisadores

Os catalisadores sintetizados foram caracterizados por Difração de raios X (DRX) em difratômetro Bruker D2 Phaser (CuK α , λ =1,5406 Å; 30 kV, 10 mA; detector LynxEye; 2θ = 10–60°; passo 0,017°; tempo de contagem 0,1 s; fenda divergente 0,6 mm, receptora 1 mm). Espectroscopia Vibracional na Região do Infravermelho por Transformada de Fourier FTIR (ATR/transmissão) em Nicolet Summit (Thermo Scientific) de 4000 a 600 cm⁻¹, 64 varreduras, resolução de 4 cm⁻¹. Análise termogravimétrica e derivada (TGA/DTG) em balança Shimadzu DTG-60, ~10 mg de amostra em cadinho de alumina, sob fluxo de N₂. Fluorescência de Raios-X por dispersão de energia (EDX) em um aparelho BRUKER S2 PUMA - SERIES II, utilizando tubo de Pd com potência máxima de 50 W,

voltagem máxima de 50 kV, corrente máxima de 1 mA e detector HighSense Silicon Drift Detector (HighSense SDD). Acidez superficial determinada pela dessorção de n-butilamina conforme descrito por Evangelista e colaboradores ⁶.

Estudo Cinético

Para o estudo cinético, foram adotados os modelos isoconversionais de Ozawa-Flynn-Wall (OFW) e Kissinger-Akahira-Sunose (KAS), conforme recomendado por diversos grupos de pesquisa⁷. Foram analisadas amostras de óleo de fritura residual (OF), bem como misturas contendo OF com 10% em massa de catalisadores HA e 10%NiHA. Aproximadamente 10 mg de cada amostra foram submetidos à análise térmica em cadinhos de alumina, sob atmosfera inerte de nitrogênio, com taxas de aquecimento de 10, 20, 30 e 40 °C/min, na faixa de temperatura de 30 a 600 °C.

Pirólise térmica e termocatalítica do Óleo de Fritura (OF)

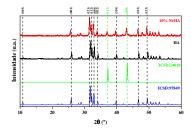
Os experimentos de pirólise foram realizados em um forno de leito fixo modelo Flyever FT-1200. As amostras foram depositadas em barquetas de vidro e inseridas em um reator cilíndrico de vidro borossilicato, sob fluxo contínuo de nitrogênio (150 mL/min). O sistema foi acoplado a um balão de duas bocas, imerso em banho termostático (Modelo SL 152 – Salab) mantido a 5 °C, com o objetivo de condensar os produtos voláteis.

A pirólise térmica do óleo de fritura residual (OF) e a pirólise catalítica, contendo 10% em massa de catalisador (HA ou 10%NiHA), foram conduzidas utilizando as seguintes rampas de aquecimento:

- 30 °C/min de 300 °C a 350 °C, mantido por 8 minutos;
- 10 °C/min de 400 °C a 520 °C, mantido por 10 minutos.

As reações foram identificadas da seguinte forma: P1 para a pirólise térmica do óleo de fritura, P2 para a pirólise catalítica com HA, e P3 para a pirólise catalítica com 10%NiHA. Os ensaios foram realizados em duplicata com o objetivo de estimar a margem de erro nas quantificações das frações dos produtos sólido, líquido e gasoso.

As amostras de bio-óleo foram previamente derivatizadas e analisadas por cromatografia gasosa acoplada à espectrometria de massas (CGMS), utilizando um equipamento modelo ISQ da Thermo Scientific. A separação cromatográfica foi realizada em uma coluna DB-5MS (Restek) com dimensões de 30 m × 0,25 mm × 0,25 μm, utilizando hélio (99,999% de pureza) como gás de arraste, com fluxo constante de 1,0 mL/min. O programa de temperatura do forno consistiu em: 60 °C por 5 minutos, seguido de aquecimento até 330 °C a uma taxa de 12 °C/min, permanecendo nesta temperatura por 12 minutos.

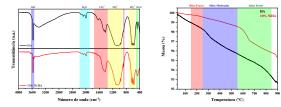


Para a derivatização, aproximadamente $0,100\,\mathrm{g}$ de bioóleo foram pesados, e adicionaram-se $300\,\mu\mathrm{L}$ de diclorometano, $40\,\mu\mathrm{L}$ de piridina e $80\,\mu\mathrm{L}$ do agente derivatizante MSTFA. A mistura foi aquecida em banho térmico por 30 minutos e, posteriormente, adicionou-se $1\,\mathrm{mL}$ adicional de diclorometano antes da análise.

Resultados e Discussão

Caracterização da hidroxiapatita

Nos difratogramas apresentados na Figura 1, referentes às amostras HA e 10%NiHA, observa-se a formação de uma fase única, compatível com os padrões característicos da hidroxiapatita⁸. Os principais picos de difração foram identificados nos ângulos 2θ de 10,81; 25,87; 31,81; 32,22; 32,85; 34,12; 39,83; 43,69 e 49,49°, correspondendo aos planos cristalinos (hkl) (010), (002), (121), (112), (030), (022), (310), (222) e (123), respectivamente. Esses resultados estão em conformidade com a carta cristalográfica de referência, código ICSD: 978449. Confiando a estrutura hexagonal da hidroxiapatita de grupo espacial do tipo p 63/m.


Figura 1. DRX da amostra 10%NiHA em vermelho HA em preto, Carta ICSD:24018 em verde para NiO e ICSD: 978449 em azul para Hidroxiapatita.

Os picos observados nas amostras de HA e 10% NiHA estão em conformidade com a carta cristalográfica de referência, confirmando a formação da estrutura cristalina da hidroxiapatita no suporte HA. Após a impregnação com níquel, a estrutura da hidroxiapatita é parcialmente preservada, embora se observe uma leve redução na cristalinidade, atribuída à presença de óxido de níquel (NiO). Na amostra contendo 10% de níquel, os picos localizados em $2\theta = 37,26^{\circ}$ e 43,29° correspondem aos planos cristalinos (111) e (200), respectivamente, de acordo com a carta cristalográfica ICSD: 24018, confirmando a formação da fase de óxido de níquel na matriz da hidroxiapatita.

O espectro de infravermelho das amostras HA e 10%NiHA, apresentado na Figura 2a, exibe as principais bandas características associadas aos grupos hidroxila, carbonato e fosfato. A banda em 3572 cm⁻¹ é atribuída às vibrações de estiramento do grupo O–H, enquanto a região entre 2192 e 1922 cm⁻¹ corresponde à presença de moléculas

de H₂O fisissorvidas na estrutura da hidroxiapatita. As bandas situadas entre 1765 e 1354 cm⁻¹, assim como a banda em 872 cm⁻¹, são associadas às vibrações do íon carbonato (CO₃²⁻), incorporado à estrutura da hidroxiapatita durante o processo de síntese. As bandas em 1064 cm⁻¹ e na região de 743 a 488 cm⁻¹ são atribuídas às vibrações de estiramento e flexão do grupo fosfato (P–O), característicos da hidroxiapatita^{3,8}. Adicionalmente, a banda mais intensa observada em 465 cm⁻¹ na amostra 10%NiHA pode ser relacionada à vibração de estiramento da ligação Ni–O, indicando a presença de óxido de níquel na estrutura do catalisador.

Figura 2. a) FTIR da amostra HA em preto e 10% NiHA em vermelho e b) Curvas de TGA da dessorção de n-butilamina para as amostras de HA e 10% NiHA.

A análise termogravimétrica demonstra que a hidroxiapatita sintetizada possui elevada estabilidade térmica, apresentando perda de massa inferior a 2 %. Essa redução se deve principalmente à liberação de água fisissorvida e quimissorvida, bem como à perda gradual de grupos carbonato (CO₃²-) incorporados à estrutura. O catalisador 10 %NiHA exibe comportamento semelhante, com perdas atribuídas à desidratação e à descarbonatação³. Assim, ambos os materiais permanecem praticamente inalterados sob aquecimento, confirmando sua alta estabilidade térmica⁹.

Os sítios ácidos presentes na superfície da hidroxiapatita (HA) são originados, principalmente, das espécies P–OH e íons Ca²⁺. A quantificação desses sítios foi realizada por meio da análise das curvas de TGA referentes à dessorção de n-butilamina, conforme ilustrado na Figura 2b. De acordo com a literatura, a classificação dos sítios ácidos com base na temperatura de dessorção da n-butilamina é a seguinte: sítios fracos apresentam perdas de massa abaixo de 250 °C; sítios moderados entre 250 °C e 550 °C; e sítios fortes acima de 550 °C¹⁰.

Os dados de perda de massa pela dessorção de nbutiliamina foram utilizados para calcular a acidez dos catalisadores estão expressos na Tabela 1.

Tabela 1. Valores de acidez para os catalisadores HA e 10%NiHA

Amostra	Sítios Fracos ^a	Sítios Moderados ^b	Sítios fortes ^c	Acidez total
НА	0,0945	0,3703	0,3391	0,8039
	mmol/g	mmol/g	mmol/g	mmol/g

10%NiH	0,03193	0,1388	0,3664	0,5371
A	mmol/g	mmol/g	mmol/g	mmol/g

^a Faixa de 150 -250 °C

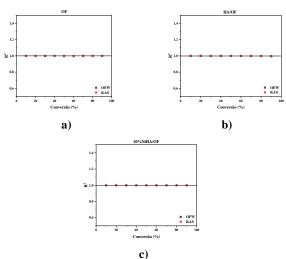
Os valores de acidez determinados para os sítios fracos, moderados e fortes na amostra de HA foram de 0,0945 mmol/g, 0,3703 mmol/g e 0,3391 mmol/g, respectivamente. Para o catalisador 10%NiHA, os valores correspondentes foram 0,03193 mmol/g (sítios fracos), 0,1388 mmol/g (moderados) e 0,3664 mmol/g (fortes). A acidez total das amostras foi de 0,8039 mmol/g para HA e 0,5371 mmol/g para 10%NiHA.

Ambos os catalisadores apresentaram valores de acidez total levemente superiores aos reportados na literatura^{10,11}. No entanto, observa-se uma redução na acidez total após a incorporação de níquel à estrutura da hidroxiapatita. Essa diminuição pode estar associada ao processo de impregnação do óxido de níquel, que pode bloquear ou inativar parte dos sítios ácidos disponíveis na superfície do suporte.

A técnica de fluorescência de raios X (FRX) foi utilizada para determinar a composição elementar da hidroxiapatita sintetizada, bem como a carga de níquel incorporada à estrutura após o processo de impregnação. Os resultados obtidos estão apresentados na Tabela 2.

Tabela 2. Valores de FRX para as amostras de HA e 10%NiHA em óxidos.

Óxido encontrado —	Amostra		
Oxido encontrado —	HA (%)	10%NiHA (%)	
Al_2O_3	0,24	0,27	
SiO_2	0,23	0,20	
P_2O_5	37,99	32,51	
SrO	0,17	0,19	
CaO	60,55	52,13	
Na_2O	0,82	0,04	
NiO	-	14,66	


A razão ideal entre o cálcio e fosforo para formação da hidroxiapatita é Ca/P=1,67. Ao utilizar os óxidos de cálcio é pentaóxido de difosfato é possível determinar a razão molar após o procedimento de síntese, secagem, calcinação e impregnação da hidroxiapatita. A razão para HA foi de 1,59, enquanto, 10%NiHA foi de 1,60. Alguns autores relatam que a formação da hidroxiapatita entre 1,58 à 1,70, valores maiores ou baixos ocorre a formação de outros fosfatos de cálcio como por exemplo o beta trifosfato de cálcio. A quantidade de massa de níquel na estrutura do catalisador 10%NiHA foi determinada utilizando a porcentagem de óxido de níquel identificado no FRX, após cálculos foi de determinado uma concentração de 11,51% de massa do metal na estrutura da hidroxiapatita.

Estudo Cinético do OF, HA/OF e 10%NiHA/OF

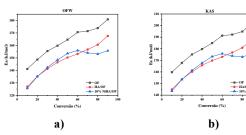
Os gráficos de conversão em porcentagem (%) com os respectivos coeficientes de correlação (R²) para as três amostras são apresentados na Figura 3. Observa-se que ambos os modelos cinéticos, Ozawa-Flynn-Wall (OFW) e Kissinger-Akahira-Sunose (KAS), apresentaram excelente linearidade, com valores de R² próximos de 1,0. Isso indica que as amostras de óleo de fritura (OF), HA/OF e 10%NiHA/OF se ajustaram adequadamente aos dois modelos matemáticos aplicados.

Esses resultados demonstram que ambos os modelos podem ser utilizados de forma confiável para descrever o comportamento cinético das reações de pirólise das amostras. Assim, a escolha de um modelo em detrimento do outro não compromete a compreensão da cinética reacional entre o óleo de fritura residual e os catalisadores avaliados.

Figura 3. Gráficos de R² para o estudo cinético dos métodos de OFW e KAS para as amostras a) OF, b)HA/OF e c) 10%NiHA/OF.

A Figura 4 apresenta as curvas de Energia de Ativação (Ea) em função da conversão para os modelos iso-conversionais OFW e KAS. Em ambos os casos, a presença de catalisador reduziu significativamente a Ea em comparação com o óleo de fritura puro (OF), indicando que os catalisadores facilitam a conversão do substrato. Entre os materiais avaliados, o catalisador 10 %NiHA mostrou o desempenho mais expressivo, exibindo valores de Ea inferiores aos do sistema HA/OF ao longo de toda a faixa de conversão.

A partir de ~60 % de conversão, observa-se uma estabilização da Ea em torno de 155 kJ mol⁻¹ (OFW) e 175 kJ mol⁻¹ (KAS) para o catalisador contendo níquel. Esse comportamento sugere que o 10 %NiHA é particularmente eficiente na etapa de descarboxilação durante a pirólise do óleo de fritura⁷. A baixa Ea, associada à predominância de sítios ácidos fortes nesse catalisador, corrobora a melhoria


a Faixa de 250 -550 °C

c Faixa de 550-850 °C

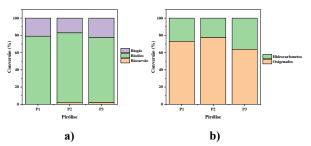
da cinética de descarbonização dos ácidos graxos presentes no óleo residual.

O processo de descarboxilação de óleos vegetais é uma etapa fundamental para a formação de hidrocarbonetos via pirólise catalítica. Portanto, a diminuição da Energía de ativação é estabilidade a partir ~60% é um forte indicio que as reações de descarboxilação, entretanto, a energia calculada pelos métodos também está relacionada as reações de craqueamento, isomerização e aromatização dos produtos pirolíticos.

Figura 4. Apresenta os valores de conversão por Energia de Ativação (Ea) para os modelos cinéticos de OFW e KAS para as três amostras.

O aumento progressivo da energia de ativação (Ea) com o avanço da conversão do óleo pode estar associado à formação de coque na superfície do catalisador ou à polimerização de produtos intermediários. No entanto, a curva correspondente ao catalisador 10%NiHA (representada em azul) apresenta uma estabilização da Ea a partir de aproximadamente 60% de conversão. Esse comportamento sugere que, a partir desse ponto, a formação de coque é limitada espacialmente ou que os produtos poliméricos são estabilizados, impedindo o bloqueio dos sítios ativos⁷.

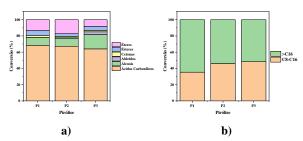
Consequentemente, o catalisador contendo níquel demonstra maior eficiência na pirólise termocatalítica do óleo de fritura, com potencial para proporcionar melhores rendimentos e estabilidade operacional. Além disso, a menor tendência à desativação por coque indica que a regeneração do catalisador pode ser realizada de forma mais simples e com menor custo¹.


Pirólise térmica e termocatalítica do óleo de fritura

Os rendimentos das pirólises são apresentados na Figura 5a, sendo P1 referente à amostra de óleo de fritura (OF), P2 à amostra contendo hidroxiapatita calcinada (HA) e P3 à amostra com o catalisador 10%NiHA. As três frações obtidas — sólida, líquida e gasosa — não apresentaram variações significativas entre as pirólises P1 e P2, com valores muito próximos. No entanto, a pirólise P3 demonstrou um leve aumento na fração gasosa, possivelmente relacionado à maior atividade catalítica promovida pela presença do níquel^{1,10}.

A Figura 5b apresenta os rendimentos da fração líquida, correspondente ao bio-óleo obtido por pirólise térmica e

termocatalítica. Observa-se que não houve variações significativas entre as amostras P1 (pirólise térmica do OF) e P2 (pirólise com HA), sugerindo que a hidroxiapatita atuou predominantemente como suporte, sem exercer influência catalítica expressiva na formação dos produtos pirolíticos. Por outro lado, a amostra P3, contendo 10% de níquel, apresentou um aumento de aproximadamente 10% na fração de hidrocarbonetos em relação às pirólises P1 e P2


Figura 5. a) rendimentos das pirólises do OF (P1), HA em (P2), 10% NiHA (P3) e em b) a fração de compostos oxigenados e hidrocarbonetos da fração líquida para P1, P2 e P3.

Esse aumento indica que a presença de óxido de níquel (NiO), incorporado à estrutura ou à superficie da hidroxiapatita, favoreceu as reações de desoxigenação do óleo de fritura². Os resultados obtidos corroboram com os dados de acidez e do estudo cinético, reforçando que o catalisador 10%NiHA é mais eficiente na conversão de compostos oxigenados em hidrocarbonetos durante o processo de pirólise.

A Figura 6a apresenta os percentuais das frações de compostos oxigenados obtidos nas pirólises do óleo de fritura residual, com e sem a presença de catalisadores. Observa-se que o teor de ácidos carboxílicos foi semelhante entre as três condições avaliadas (P1, P2 e P3), mantendo-se em torno de 65%. As concentrações de cetonas, aldeídos e ésteres foram baixas em todas as amostras. O teor de álcoois foi aproximadamente 9,5% nas pirólises P1 (térmica) e P2 (com HA), enquanto na pirólise P3 (com 10%NiHA) esse valor aumentou significativamente para 17,84%.

Em contrapartida, os teores de éteres foram mais elevados nas amostras P1 (13,37%) e P2 (17,20%) do que na amostra P3 (8,37%). Essa inversão nos teores de álcoois e éteres sugere que o catalisador 10%NiHA apresenta maior eficácia na quebra de ligações C–O dos éteres, promovendo sua conversão em álcoois de cadeia mais longa¹º. Esses resultados reforçam a atividade do catalisador na modificação do perfil químico do bio-óleo, favorecendo a formação de compostos com maior valor agregado.

Figura 6. a) percentuais de compostos oxigenados segundo suas funções orgânicas e b) percentuais de hidrocarboneto segundo número de carbono produzidos.

As frações de hidrocarbonetos geradas nas pirólises térmica e termocatalíticas são apresentadas na Figura 6b. Observa-se um aumento na fração de hidrocarbonetos na faixa de C8–C16 — correspondente aos combustíveis do tipo diesel verde e/ou combustível sustentável de aviação (SAF) — nas amostras tratadas com os catalisadores HA e 10%NiHA. Esse comportamento indica que os catalisadores favoreceram a quebra de cadeias carbônicas longas (>C16), promovendo a formação de frações mais leves e com maior valor energético. Em contraste, a pirólise térmica do óleo de fritura (P1) resultou predominantemente em compostos com mais de 16 átomos de carbono, sugerindo menor eficiência na fragmentação térmica das cadeias graxas.

Conclusões

Com base nas análises de caracterização por DRX, FTIR, TGA/DTG, FRX e acidez via dessorção de n-butilamina, conclui-se que é viável sintetizar catalisadores de hidroxiapatita utilizando cascas de ovos como fonte alternativa e sustentável de cálcio. A impregnação de níquel na estrutura da hidroxiapatita promoveu um aumento significativo na acidez dos sítios fortes e na força acida do catalisador como sugere a Tabela 1, o que resultou em uma melhoria no perfil de hidrocarbonetos obtidos durante a pirólise (P3). Os resultados cinéticos, avaliados por meio dos modelos iso-conversionais Ozawa-Flynn-Wall (OFW) e Kissinger-Akahira-Sunose (KAS), apresentaram coeficientes de correlação (R²) próximos de 1,0, indicando que ambos os modelos são adequados para descrever a cinética das reações entre o óleo de fritura e os catalisadores.

As curvas de energia de ativação mostraram que o catalisador 10% NiHA possui maior eficiência na desoxigenação do óleo de fritura, evidenciada pela estabilização da Ea após 60% de conversão e pelo menor teor de oxigenados. Os resultados das pirólises (P1, P2 e P3) demonstraram um aumento na produção de hidrocarbonetos na faixa C8–C16 — correspondente ao diesel verde e/ou bioquerosene de aviação — quando catalisadores foram utilizados, especialmente na amostra P3. Além disso, observou-se uma conversão mais eficiente de éteres em álcoois de cadeia longa na presença do catalisador contendo

níquel, indicando seu papel relevante na modificação da composição dos produtos oxigenados.

Agradecimentos

Os autores agradecem o apoio financeiro do Programa de Recursos Humanos da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – PRH/ANP, suportado com recursos provenientes do investimento de empresas petrolíferas qualificadas na Cláusulas de P, D&I da Resolução n°918/2023 ANP. Ao Laboratórios do LABPROBIO/NUPPRAR e LABPEMOL pela analises realizadas. Ao Instituo de Química e Programa de Pós-Graduação em Química da UFRN.

Referências

- D. J. N. Subagyno, N. M. Madani; C. Z. L. C. B. Prechisilia; N. S. Sahirah; D. U. Utami; A. M. Qosim; M. A. Kassim; R. Gunawan; V. L. Allo, *J. of Analytical and Applied Pyrolysis.* 2025, 186, 1-15.
- 2. B. Chen; Z. Zhou; Y. Li; K. B. Tan; Y. Wang; X. Rao; J. Huang; X. Zhang; Q. Li; G. Zhan, *Applied Catalysis B: Environmental*, **2023**, 338, 1-12.
- 3. G. Ionescu; M. Macavei; M. Patrascu; A. Volceanov; R. Patrascu; S. Werle; A. Mlonka-Mędrala; A. E. Coman; Aneta Magdziarz; C. Marculescu, *Energy Conversion and Management*, **2025**, 323, 1-10.
- 4. A. Mlonka-Mędrala; S. Sobek; M. Wądrzyk; S. Werle; M. Patraşcu; G. Ionescu; C. Marculescu; A. Magdziarz, *J. of Environmental Management*, **2025**, 373, 1-11.
- 5. J. Dobosz; M. Małecka; M. Zawadzki, *Journal of the Energy Institute*, **2018**, 91, 411–423.
- 6. J. P. da C. EVANGELISTA; A. M. de M. Araújo; A. D. Gondim; A. S. de Araujo, *Energy & Environment*, **2023**, 36, 786-806.
- A. C. de M. Batista; G. S. de M. Queiroz; I. M. de L. Ferreira, G. A. C. de M. Viana; A. M. de M. Araújo; L. N. Cavalcanti; A. S. de Araujo; M. S. de Sá, A. Wisniewski Jr., A. D. Gondim, Fuel, 2024, 365, 1-17.
- M. Mira; F. L. Leiteb; P. S. de P. H. Junior; F. L. Pissettia; A. M. Rossid; E. L. Moreirad; Y. P. Mascarenhase, *Materials Research*, 2012, 15, 622-627.
- 9. P. A. F. Sossa; B. S. Giraldo; B. C. G. Garcia; E. R. Parra; P. J. A. Arango, *Revista Matéria*, **2018**, 23, 1-17.
- 10. Yogita, P. Shiva Kumar, G. H. Gunasekar, N. Lingaiah, *Biomass and Bioenergy*, **2025**, 197, 1-13.
- 11. R. Tamim; D. Prasetyoko; S. Jovita; R. Subagyo; Y. L. Nimah; H. Holilah; H. Bahruji; N. Asikin-Mijan; A. A. Jalil; H. Hartati; D. D. Anggoro, *Renewable Energy*, **2025**, 248, 1-15.