

Avaliação das propriedades fotocatalíticas da heteroestrutura Ag₃PO₄-Cu₃(PO₄)₂ na degradação de levofloxacina

Luís J. Silva¹, Renato P. Sousa^{1*}, João F. C. Filho¹, Marynara S. Sampaio², Aline E. B. Lima², Geraldo E. Luz Jr.²

Resumo/Abstract (Helvética, tam. 12)

RESUMO - Neste trabalho, foi realizada a síntese de uma heteroestrutura tipo esquema-Z de Ag₃PO₄-Cu₃(PO₄)₂, visando à melhoria da estabilidade do Ag₃PO₄. Na caracterização dos sólidos, a difração de raios X (DRX) mostrou que o Ag₃PO₄ possui uma estrutura cúbica centrada no corpo e alta cristalinidade, além de evidenciar a formação da heteroestrutura. As análises de microscopia eletrônica de varredura (MEV) revelaram que o Ag₃PO₄ não apresenta uma morfologia definida, enquanto o Cu₃(PO₄)₂ possui uma morfologia em forma de folhas. Para as heteroestruturas, o MEV evidenciou a presença dos dois materiais, confirmando a formação da heteroestrutura. Nas análises de fotoluminescências realizadas, foi possível observar que as heteroestruturas possuem uma resposta melhor quando comparada com os materiais puros. Os testes fotocatalíticos mostraram que o Ag₃PO₄ puro como as duas heteroestruturas possuem uma boa atividade fotocatalítica para degradação de LEV. No entanto, os testes de reuso mostraram que AgP-CuP_{10%} teve melhor desempenho em três ciclos.

Palavras-chave: Fotocatálise, Fosfato de prata (Ag₃PO₄), Fotoestabilidade.

ABSTRACT - In this work, a Z-scheme Ag₃PO₄-Cu₃(PO₄)₂ heterostructure was synthesized, aiming to improve the stability of Ag₃PO₄. In the characterization of the solids, X-ray diffraction (XRD) showed that Ag₃PO₄ has a body-centered cubic structure and high crystallinity, and also confirmed the formation of the heterostructure. Scanning electron microscopy (SEM) analyses revealed that Ag₃PO₄ does not exhibit a defined morphology, while Cu₃(PO₄)₂ shows a leaf-like morphology. For the heterostructures, SEM evidenced the presence of both materials, confirming the formation of the heterostructure. Photoluminescence analyses showed that the heterostructures exhibited a better response compared to the pure materials. Photocatalytic tests demonstrated that pure Ag₃PO₄ and both heterostructures possess good photocatalytic activity for the degradation of LEV. However, reuse tests showed that AgP-CuP10% performed better over three cycles.

Keywords: Photocatalysis, Silver phosphate (Ag₃PO₄), *Photostability*.

Introdução

Nos últimos anos, o uso indiscriminado de antibióticos tornou-se uma das principais preocupações da comunidade científica devido à possibilidade de aumento da resistência bacteriana (1). Entre os diversos antibióticos, um dos mais utilizados é a Levofloxacina (LEV). A LEV pertence à família das fluoroquinolonas e é amplamente aplicada no tratamento de diversas doenças respiratórias, infecções de pele e do sistema urinário (2). No entanto, uma vez ingerida, nosso corpo não é capaz de metabolizá-la completamente, sendo excretada como fármaco inalterado e terminando diretamente no esgoto (2). Portanto, a busca por meios eficientes de remediação da LEV em ambientes aquáticos tem sido amplamente estudada. Nesse sentido, estudos apontam os processos oxidativos avançados (POAs)

como uma alternativa eficiente para a remoção da LEV em efluentes (3).

Os POAs se dividem em diferentes métodos, mas a fotocatálise heterogênea (FH) é que vem ganhando mais destaque por apresentar resultados muito relevantes (4). Na FH, um semicondutor é irradiado com energia suficiente para promover a formação de pares elétron $(e^{-})/lacuna (h^{+})$; essas espécies são capazes de formar radicais oxidantes, capazes de promoverem a degradação de poluentes (5). Assim, estudos com semicondutores que possam ser usados na FH têm ganhado destaque nas últimas décadas (6).

Entre os diversos materiais estudados, o Ag₃PO₄ tem se destacado por apresentar resultados relevantes na degradação de antibióticos. Esse material é um semicondutor do tipo n, com energia de banda proibida de ~2,7 eV e um rendimento quântico de aproximadamente 90% (7). No entanto, o material apresenta uma significativa fotoinstabilidade, sofrendo fotocorrosão quando irradiado

¹Programa de Pós-graduação em Química (PPGQ), Universidade Federal do Piauí (UFPI), Av. Universitária, 64049-550, Teresina, Piauí. *E-mail: renatito.sousa.33046@gmail.com

²Centro de Ciências da Natureza (CCN), Universidade Estadual do Piauí (UESPI), R. João Cabral, 2231, 64002-150, Teresina, Piauí.

(7). Assim, muitos autores têm conduzido estudos na busca de minimizar o processo de fotocorrosão do Ag_3PO_4 , sendo o uso de reagentes ou metais sacrifícios uma das alternativas mais abordadas na literatura (8). Outros estudos que ganharam destaque na tentativa de melhorar a fotoinstabilidade do Ag_3PO_4 envolvem a preparação de sistemas heteroestruturados de Ag_3PO_4 (9). Estudos com heteroestruturas, como $Ag_3PO_4/LaPO_4$, e $Ag_3PO_4/Ni_3(PO_4)_2$ apresentaram resultados bastante relevantes (10,11).

Portanto, este trabalho apresenta resultados da preparação e caracterização de uma heteroestrutura composta por Ag₃PO₄ e Cu₃(PO₄)₂, explorando seu potencial aplicação como material fotocatalítico de alta eficiência.

Experimental

Síntese do Ag₃PO₄

O fosfato de prata (Ag₃PO₄) foi sintetizado via método de coprecipitação (CP). Para isso, nitrato de prata (AgNO₃ 99% Sigma Aldrich) e hidrogenofosfato de sódio penta hidratado (Na₂HPO₄.5H₂O 99% Sigma Aldrich) foram os precursores dos íons responsáveis pela formação do Ag₃PO₄. Em um béquer, 3 mmol de AgNO₃ foi diluído em 50 mL de água deionizada, em seguida colocado em banho ultrassom por 15 min. O mesmo procedimento foi realizado com a amostra de Na₂HPO₄, no entanto, foi dispersado apenas 1 mmol em 50 mL de água deionizada. Então, em uma bureta de 50 mL, foi adicionado à solução de Na₂HPO₄, e em seguida a mesma foi adicionada lentamente sob a solução de AgNO3, todo processo de mistura das soluções foi realizado sob agitação magnética constante e pH igual 7. Em seguida o material foi coletado, lavado (8 vezes) com água destilada, seco por 12 h em temperatura de 70°C e ao final, passou por tratamento térmico, temperatura de 450°C, taxa de aquecimento de 2°C/min por um tempo de 240 min.

Síntese das heteroestruturas Ag₃PO₄/Cu₃(PO₄)₂

O preparo das heteroestruturas AgP- $Cup_{10\%}$ e AgP- $Cup_{5\%}$, foi realizada de maneira semelhante a metodologia utilizada para o Ag_3PO_4 puro.

Para síntese das heteroestruturas de $Ag_3PO_4/Cu_3(PO_4)_2$, misturou-se no mesmo béquer de 50 mL de solução de Ag_3NO_3 , uma certa quantidade de $Cu(NO_3)_2.5H_2O$, sendo a massa de $Cu(NO_3)_2$ adicionada equivalente a 10% em massa em relação a quantidade de Ag^+ , (i) para a heteroestrutura Ag_3P_3 - $Cup_{10\%}$ e (ii) 5% em massa em relação quantidade de Ag^+ para amostra Ag_3P_3 - $Cup_{5\%}$. Posteriormente, a solução com a amostra Ag_3P_3 - $Cup_{10\%}$, foi lavada (8 vezes) com água deionizada, seca em 70 °C por 12 h, e sendo finalizado com tratamento térmico de 450 °C, rampa de 2 °C/min, por um tempo de 240 min.

O mesmo procedimento pós síntese foi realizado para heteroestrutura AgP-CuP_{5%}.

Caracterização dos sólidos

Foi empregado difração de raios-X para identificação estrutural bem como a cristalinidade dos materiais como Cu₃(PO₄)₂, Ag₃PO₄ e AgP-CuP (5% e 10%), utilizou-se um equipamento da Shimadzu (XRD 6000), radiação de Cu K α ($\lambda = 0.15406$ nm), filtro de níquel, voltagem de 40 kV e corrente do tubo de 30 mA. A leitura de 2θ em alto ângulo variou de $10-110^{\circ}$, com passo de 0.02° e tempo de 1s. A Microscopia Eletrônica de Varredura (MEV) foi utilizada para analisar a morfologia, estrutura superficial dos materiais sintetizados. Os resultados de MEV foram obtidos em equipamento da marca FEI, fonte eletrônica de emissão de campo Quanta FEG e Microscopia Eletrônica de Varredura (MEV) com tensão de aceleração entre 0,5 e 30 Kv. As análises de fotoluminescência (PL) foram realizadas para avaliar a taxa de recombinação dos portadores de carga nas heteroestruturas em comparação aos materiais puros. Essa medida foi realizada utilizando um laser Kimmon® He-Cd, com comprimento de onda máximo de 325 nm e potência máxima de 40 mW.

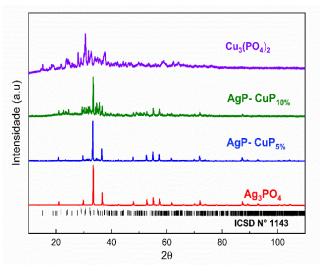
Ensaios Fotocatalíticos

O desempenho fotocatalítico dos materiais Ag₃PO₄, Cu₃(PO₄)₂, e Ag₃PO₄/Cu₃(PO₄)₂ foi medido na fotodegradação da solução de (10 mg L-1) LEV, sendo utilizado como fonte de radiação uma lâmpada de vapor metálico (OSRAM), potência de 400 W, uma célula catalítica contendo a solução do poluente com o catalisador. Para cada teste catalítico foi utilizado 50 mg de catalisador para 100 mL de solução do fármaco. Inicialmente para observar o equilíbrio de adsorção/dessorção, o sistema permanece na ausência de radiação (no escuro) por um intervalo de 30 min (10, 20, 30 min), após esse intervalo, o sistema é irradiado e amostras passam a ser coletadas em tempos periódicos já pré-determinados. Todas as alíquotas coletadas, tantos as em 30 min no escuro, bem como as amostras coletadas sob irradiação, são centrifugadas por 20 min, e posteriormente analisadas no espectrofotômetro de UV-Vis (Shimadzu UV-2600).

Neste trabalho, também foi realizado o processo de reuso para a amostra e $Ag_3PO_4/Cu_3(PO_4)_2$ para avaliar se o material manteve sua atividade fotocatalítica, além de observar se o Ag_3PO_4 se manteve estável em relação a sua fotoinstabilidade.

Resultados e Discussão

Difração de Raios-x

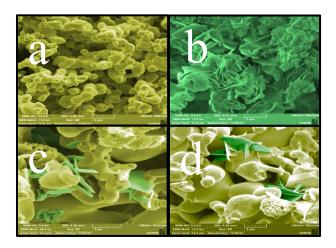

A difração de raios-X foi utilizada para avaliar o grau de ordem/desordem relacionada com à cristalinidade

dos materiais a longo alcance, paras as amostras puras de Ag_3PO_4 e Cu_3PO_4 , além das heteroestruturas $AgP-CuP_{5\%}$ e $AgP-CuP_{10\%}$.

A Figura 1 mostra os padrões de DRX das amostras. Os planos de difração do Ag₃PO₄ puro estão de acordo com resultados já citados na literatura, apresentando estrutura cúbica de corpo centrado e grupo espacial P43n em boa concordância com o Inorganic Crystal Structure Database (ICSD) n° 14000 (7). Para o Cu₃(PO₄)₂, o resultado de DRX juntamente com o ICSD n° 1143, mostra que material possui uma fase triclínica grupo espacial P-1(12).

Os difratogramas para as amostras modificadas com Cu, é nítido o surgimento de planos de difração antes não observados na amostra pura de Ag_3PO_4 e $Cu_3(PO4)_2$, o aparecimento desses planos juntamente com o ICSD n° 1143, sugere a presença de uma segunda fase referente ao $Cu_3(PO_4)_2$, portanto, isso mostra que o processo de síntese para a heteroestrutura foi bem-sucedida (13).

Figura 1. Difratograma de raios X em médio ângulo para o Ag_3PO_4 , $Cu_3(PO_4)_2$, $AgP-CuP_{5\%}$ e $AgP-CuP_{10\%}$.


Microscopia Eletrônica de Varredura

A morfologia dos materiais foi estudada por microscopia eletrônica de varredura (MEV). A Figura 2a-d mostra os resultados obtidos para o Ag₃PO₄, Cu₃(PO₄)₂, AgP-CuP_{5%} e AgP-CuP_{10%}.

A micrografia (MEV) apresentada para o Ag_3PO_4 na Figura 2a revela que material não possui uma morfologia bem definida. Como observado por Zhang e colaboradores, temperaturas elevadas ($T > 200\,^{\circ}\text{C}$) favorecem o processo de sinterização do Ag_3PO_4 (14). Para o $Cu_3(PO_4)_2$, sua morfologia apresenta um formato de folhas, conforme mostrado na Figura 2b (15). Para as heteroestruturas preparadas (Figura 2c-d), é possível observar a presença tanto do Ag_3PO_4 como das folhas de $Cu_3(PO_4)_2$, vale

ressaltar, que o processo de sinterização fez com que o Ag_3PO_4 se aglomerasse nas superfícies das folhas de $Cu_3(PO_4)_2$, dessa forma, sugere-se que ambos materiais devem possuir uma interação que pode influenciar em algumas propriedades, tais como a energia de banda proibida (EB_{gap}) e na atividade fotocatalítica das heteroestruturas.

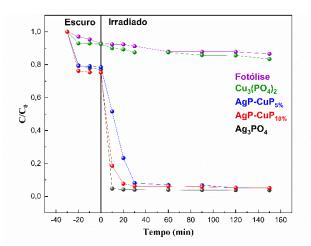
Figura 2. Micrografia das amostras a) Ag_4PO_4 , b) $Cu_3(PO_4)_2$, c) $AgP-CuP_{5\%}$ e d) $AgP-CuP_{10\%}$.

Análise de Fotoluminescência

A fotoluminescência é um importante resultado para entender a relação entre os portadores de cargas e a eficiência fotocatalítica de um material. De modo geral, esse resultado está associado a emissão de energia (fótons) gerada pela recombinação do par h^+/e^- , que são formados no material quando este é submetido a irradiação.

Conforme mostra a Figura 3, observa-se que o $Cu_3(PO_4)_2$ apresenta uma banda em torno de 490 nm de elevada intensidade. Essa alta intensidade observada é um indicativo que o material demonstra uma taxa de recombinação de elétrons/lacunas bem alta, o que é desfavorável para aplicações em fotocatálise. Por outro lado, a intensidade da banda de PL do Ag_3PO_4 é significativamente menor que do $Cu_3(PO_4)_2$, indicando que o material apresenta uma menor taxa de recombinação (16). Para as heteroestruturas de AgP-CuP modificadas com 5 e 10%, respectivamente, foi observado que a banda em torno 610 nm são ainda menores quando comparadas com as amostras puras de $Cu_3(PO_4)_2$ e Ag_3PO_4 . Isso é um indicativo que a formação da heteroestrutura está minimizando o processo de recombinação de cargas.

Figura 3. Espectros de PL à temperatura ambiente das amostras de: Ag_3PO_4 , $Cu_3(PO_4)_2$, $AgP-CuP_{5\%}$ e $AgP-CuP_{10\%}$.


Atividade Fotocatalítica

As curvas cinéticas de degradação da LEV, apresentadas na Figura 4, revelaram que não houve uma diminuição significativa na fotólise do antibiótico, indicando que o material apresenta alta estabilidade frente à irradiação policromática. A taxa de redução da banda de absorção de LEV foi de apenas 6,78 %, comprovando a alta estabilidade do poluente. Para o Cu₃(PO₄)₂ observa-se que este não apresentou um desempenho fotocatalítico satisfatório para a degradação da LEV, exibindo uma porcentagem de degradação de 10,8 %. Conforme o resultado de PL (Figura 3), o material apresentou taxa de recombinação elétron/lacuna elevada, o que influencia no processo de formação de espécies oxidantes e redutoras no meio, como o radical hidroxila (17).

Os valores de taxas de degradação da LEV foram: 100 % para o Ag_3PO_4 , 98 % com a amostra $AgP-CuP_{5\%}$ e 99 % com $AgP-CuP_{10\%}$. Ambos os fotocatalisadores à base de Ag_3PO_4 mostraram excelente atividade fotocatalítica, o que era esperado, dado que o Ag_3PO_4 é amplamente reconhecido como um fotocatalisador eficiente (7).

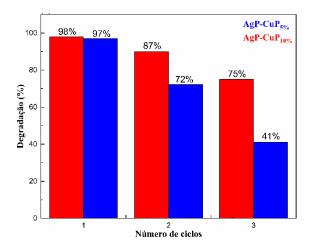

Para o Ag₃PO₄ puro, é relevante notar que, após um período de 30 min de reação no escuro, o ensaio feito sob iluminação escureceu nos primeiros 10 min de irradiação (7). Esse fenômeno estar relacionado ao surgimento de prata metálica e à formação de Ag₂O (18). A formação inicial de Ag⁰ beneficia a atividade fotocatalítica do Ag₃PO₄, promovendo o efeito plasmônico, no entanto, os íons Ag⁺ reduzidos a Ag⁰ originam-se de aglomerados de [AgO₄], causando a corrosão da estrutura do Ag₃PO₄ e, consequentemente, a diminuição de sua atividade fotocatalítica ao longo do tempo (19).

Figura 4. as curvas cinéticas da fotodegradação de LEV sob a ação dos fotocatalisadores Ag₃PO₄, Cu₃(PO₄)₂, AgP-CuP_{5%} e AgP-CuP_{10%},.

A Figura 5 apresenta os ciclos fotocatalíticos do estudo de degradação da LEV, sendo avaliado a estabilidade fotoquímica das duas heteroestruturas. Para cada material, foram realizados três testes fotocatalíticos. Para o Cu₃(PO₄)₂, o teste de ciclagem não foi realizado devido ao baixo desempenho, enquanto para o Ag₃PO₄ puro, a não realização do teste deveu-se à rápida fotocorrosão sofrida (7). A heteroestrutura AgP- $CuP_{5\%}$ sofreu uma clara redução no seu desempenho fotocatalítico no terceiro reuso, sugerindo que essa diminuição esteja relacionada ao processo de fotocorrosão do Ag₃PO₄. No entanto, o AgP-CuP_{10%} manteve sua eficiência fotocatalítica após os três ciclos realizados, mostrando apenas uma redução de 25 % em sua atividade em comparação ao primeiro ciclo. Portanto, a formação da heteroestrutura foi favorável para a melhora da fotoestabilidade do Ag₃PO₄ (20).

Figura. 5: Ciclo catalítico realizado para o catalisador AgP-CuP_{10%} e AgP-CuP_{5%}.

Conclusões

A síntese do Ag₃PO₄, Cu₃(PO₄)₂ e das heteroestruturas Ag₃PO₄/Cu₃(PO₄)₂ (5% e 10%) foram realizadas com sucesso, conforme indicado pelos resultados de DRX. A microscopia eletrônica de varredura (MEV) mostrou que o Ag₃PO₄ não apresentou uma morfologia definida devido o processo de sinterização que o material sofre quando passa por tratamento térmico superior a 200°C. O Cu₃(PO₄)₂ apresentou morfologia na forma de folhas. A análise de fotoluminescência mostrou que heteroestruturas de recombinação possuem taxa elétron/lacuna menores que os materiais puros. Os testes fotocatalíticos demonstram que os fotocatalisadores Ag₃PO₄, AgP-CuP_{5%} e AgP-CuP_{10%} podem promover a degradação desse antibiótico em solução aquosa. No entanto, o reuso dos fotocatalisadores mostrou que o AgP-CuP5% perdeu sua eficiência fotocatalítica durante os três ciclos realizados. Em contrapartida, o AgP-CuP_{10%} manteve sua atividade fotocatalítica após três ciclos. A estabilidade desse material pode estar associada à formação da heteroestrutura entre os dois semicondutores.

Agradecimentos

Os autores são gratos às agências CAPES e CNPq pelo financiamento da pesquisa, e as universidades UESPI e UFPI pelo apoio e suporte técnico na realização deste trabalho.

Referências

- (1) Zammit; M. Yoshida; P. S. Mariano. *Environ. Sci. Technol.* **2020**, *54*, 7677–7686.
- (2) Y. Zhou; et al. J. Hazard. Mater. 2021, 403, 123834.
- (3) J. Zhao; et al. Opt. Mater. 2023, 135, 113239.
- (4) V. Hasija; et al. J. Hazard. Mater. 2021, 413, 125324.
- (5) H. Wang; et al. *Chin. J. Catal.* **2022**, *43*, 178–214.
- (6) Y. Li; et al. Mater. Chem. Phys. **2021**, 271, 124871
- (7) Z. Yi; et al. *Nat. Mater.* **2010**, *9*, 559–564.
- (8) Y. Wang; et al. *Mater. Lett.* **2022**, *309*, 131451.
- (9) W. Liu; W. Hu. Colloids Surf., A 2022, 655, 130298.
- (10) S. Promnopas; et al. *Chem. Phys. Lett.* **2021**, 779, 138883
- (11) Q. Ma; et al. J. Colloid Interface Sci. **2020**, 569, 101–113.
- (12) Z. Feng; et al. Ceram. Int. **2022**, 48, 26904–26910.
- (13) X. Zhu; et al. *Environ. Res.* **2022**, 203, 111843.
- (14) S. Zhang; et al. *Mater. Sci. Eng., B* **2015**, 201, 57–65
- (15) L. Pan; et al. ChemistrySelect 2022, 7, 45.

- (16) G. Botelho; et al. J. Phys. Chem. C 2015, 119, 6293–6306.
- (17) A. E. B. Lima; et al. *J. Solid State Electrochem.* **2022**, *26*, 997–1011.
- (18) T. M. S. Costa; et al. *J. Photochem. Photobiol., A* **2018**, *364*, 461–471.
- (19) L. P. Oliveira; et al. *Ceram. Int.* **2021**, *47*, 22604–22614.
- (20) Y. Wang; et al. Surf. Interfaces **2024**, 48, 104319.