

Efeito do Dopante e da Composição do Biogás no Desempenho de Catalisadores de Níquel Suportados em Óxidos de Cério Preparados pelo Método Sol-gel na Reforma Seca do Biogás

Amanda de C. P. Guimarães^{1,2}, André L. A. Marinho ^{3,4,5}, Andressa A.A. Silva¹, Raimundo C. Rabelo-Neto ⁴, Yutao Xing¹, Gary Jacobs⁶, Nicolas Bion⁵, Fabio S. Toniolo³, Fabio B. Noronha⁴, Lisiane V. Mattos¹

¹Universidade Federal Fluminense, Niterói, Brasil

²Universidade do Estado do Rio de janeiro, Rio de Janeiro, Brasil

³Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

⁴Instituto Nacional de Tecnologia, Rio de Janeiro, Brasil

⁵Universidade de Poitiers, Poitiers, França

⁶Universidade do Texas em San Antonio, San Antonio, Estados Unidos

* Autor correspondente: e-mail: amanda.cpguimaraes@yahoo.com.br

Resumo/Abstract

RESUMO – O biogás contém altos níveis de CO₂, cujas emissões contribuem para o efeito estufa. A conversão do biogás em gás de síntese por meio da reforma seca do metano (DRM) é uma abordagem para a obtenção de produtos de maior valor agregado, como o H₂. Uma estratégia para melhorar a estabilidade dos catalisadores é o uso de suportes com propriedades redox, como os óxidos à base de cério. A alta mobilidade de oxigênio desses suportes facilita a remoção do carbono, prevenindo a desativação do catalisador. Este trabalho investiga o efeito do dopante (Pr e Zr) e da composição do biogás (razão molar CH₄/CO₂ = 0,67-1,5) no desempenho de catalisadores de Ni suportados em óxidos à base de cério preparados pelo método sol-gel para a reação de DRM. O catalisador dopado com Zr apresentou o melhor desempenho, resistindo à formação de carbono devido ao menor tamanho dos cristalitos de Ni e à maior capacidade de armazenamento de oxigênio. A desativação observada nas amostras foi atribuída tanto à formação de carbono quanto ao acúmulo de espécies de carbonato. A redução da quantidade de CO₂ na alimentação melhorou a estabilidade do Ni/CeZrO₂, possivelmente devido à menor formação de carbonatos. *Palavras-chave: Reforma Seca do Biogás, Método Sol-gel, Óxidos de Cério Dopados*.

ABSTRACT - Biogas contains high levels of CO_2 , whose emissions contribute to the greenhouse effect. The conversion of biogas into synthesis gas through dry reforming of methane (DRM) is an approach to obtaining higher value-added products, such as H_2 . One strategy to improve catalyst stability is the use of supports with redox properties, such as cerium-based oxides. The high oxygen mobility of these supports facilitates carbon removal, preventing catalyst deactivation. This study investigates the effect of the dopant (Pr and Zr) and biogas composition (molar ratio $CH_4/CO_2 = 0.67-1.5$) on the performance of Ni catalysts supported on cerium-based oxides prepared by the sol-gel method for the DRM reaction. The Zr-doped catalyst exhibited the best performance, resisting carbon formation due to the smaller Ni crystallite size and higher oxygen storage capacity. The deactivation observed in the samples was attributed to both carbon formation and the accumulation of carbonate species. Reducing the amount of CO_2 in the feed improved the stability of Ni/CeZrO₂, possibly due to lower carbonate formation. *Keywords: Dry Reform of Biogas, Sol-gel Method, Doped Cerium-based Oxides*.

Introdução

A crescente demanda por energia e as preocupações ambientais impulsionam a busca por fontes renováveis, como o biogás, que é produzido pela digestão anaeróbica da biomassa e composto principalmente por CH₄ e CO₂. A conversão do biogás em gás de síntese via reforma seca do metano (DRM) é uma alternativa promissora para a produção de hidrogênio e combustíveis sintéticos. No entanto, a DRM é um processo endotérmico e suscetível à desativação catalítica devido à deposição de carbono (1).

O níquel é o metal de transição mais utilizado na DRM por sua boa atividade e baixo custo, porém, a formação de

carbono sobre grandes partículas de Ni reduz sua eficiência (2). Métodos de preparo como o sol-gel são utilizados para controlar o tamanho das partículas e melhorar a dispersão do metal no catalisador (3). Além disso, suportes com propriedades redox, como óxidos à base de cério, favorecem a remoção do carbono acumulado, reduzindo a desativação. Entretanto, a céria pura apresenta baixa estabilidade térmica, sendo necessário o uso de dopantes como Zr e Pr para melhorar suas propriedades redox e aumentar o número de vacâncias de oxigênio (4).

O desempenho dos catalisadores na reforma seca do metano (DRM) também é significativamente influenciado pela variação na composição da corrente de alimentação,

especialmente no caso do biogás. A proporção de CH₄/CO₂ no biogás, que pode oscilar entre 0,67 e 1,5, é influenciada pelo tipo de matéria orgânica e pelas condições do processo de fermentação (5). Portanto, o desenvolvimento de um catalisador eficiente para diferentes teores de CO₂ é crucial para a viabilidade econômica do processo. No entanto, poucos estudos na literatura exploram o efeito da razão molar CH₄/CO₂ no comportamento de catalisadores de Ni à base de cério dopado. O objetivo deste trabalho é estudar o desempenho de catalisadores Ni/CeO₂ dopados com Zr e Pr na reação de DRM, avaliando também o efeito da razão molar CH₄/CO₂.

Experimental

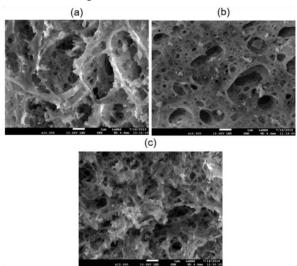
Preparo dos catalisadores

Catalisadores de níquel (10% em peso) foram preparados pelo método sol-gel, seguindo a metodologia descrita por (6). Inicialmente, nitrato de níquel (II) hexahidratado e nitrato de cério (III) hexahidratado foram dissolvidos em solução de ácido cítrico (razão molar ácido cítrico/(nitrato de níquel + nitrato de cério) igual a 1). A mistura foi submetida à evaporação em rotavapor, em duas etapas: inicialmente a 100 rpm (temperatura ambiente, 2 h) e, posteriormente, a 55 rpm (80 °C, vácuo), para remoção do excesso de água. As amostras foram secas a 100 °C por 12 h. Catalisadores dopados com zircônio (Zr) e praseodímio (Pr) foram preparados, mantendo a razão molar cério/dopante em 4:1. Nitratos dos dopantes foram adicionados à mistura inicial, mantendo a razão molar ácido cítrico/metais em 1:1. A calcinação foi realizada em mufla, com dois estágios de temperatura: aquecimento de 30 °C a 300 °C (1 °C/min, 2 h) e, subsequentemente, aquecimento de 300 °C a 400 °C (1 °C/min, 4 h).

Caracterização

Os catalisadores foram analisados por diversas técnicas: Difração de Raios X (DRX), Redução à Temperatura Programada (TPR), Microscopia Eletrônica por Varredura (MEV) e Espectroscopia na região do Infravermelho por Transformada de Fourier com Reflectância Difusa de CO₂ (DRIFTS de CO₂). Os resíduos dos testes catalíticos foram examinados por MEV e Análise Termogravimétrica (ATG). Para a análise de DRX, os catalisadores foram submetidos a redução prévia a 750 °C por 1 h (10 °C/min) e passivação sob fluxo de uma mistura de 5 % O₂/N₂ a -70 °C por 1 h e a temperatura ambiente por 1 h.

Testes Catalíticos


Os testes catalíticos foram realizados em um reator de quartzo a 800 °C e pressão atmosférica, utilizando razão molar CH₄/CO₂ de 0,67, 1 e 1,5, durante 24h. Antes da reação, as amostras foram diluídas com SiC (razão SiC/catalisador de 1,5) e então reduzidas sob fluxo de H₂ (30 mL/min) a 750 °C por 1h. O gás efluente do reator foi

analisado usando um cromatógrafo gasoso (Agilent 6890A), equipado com um detector de condutividade térmica e uma coluna Carboxen 1010.

Resultados e Discussão

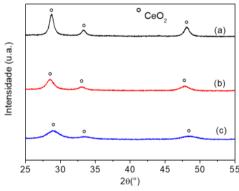

As imagens de MEV dos catalisadores calcinados são apresentadas na Figura 1.

Figura 1. Micrografias dos catalisadores: (a) Ni/CeO₂, (b) Ni/CePrO₂ e (c) Ni/CeZrO₂.

Os resultados de MEV indicam que todos os catalisadores possuem morfologia semelhante e alta porosidade. Dessa forma, a adição de dopantes não provocou alterações estruturais ou texturais no catalisador.

A Figura 2 apresenta os difratogramas obtidos das amostras calcinadas.

Figura 2. Difratograma de raio X dos catalisadores calcinados: (a) Ni/CeO₂, (b) Ni/CePrO₂ e (c) Ni/CeZrO₂.

Todas as amostras exibiram as linhas de difração características do CeO₂ (PDF#34-0394) na fase cúbica. Não foram detectadas as linhas de difração referentes às fases dos óxidos de praseodímio e zircônio. No entanto, a adição de Pr e Zr à céria deslocou as linhas de difração do CeO₂ para valores menores e maiores de 2θ, respectivamente.

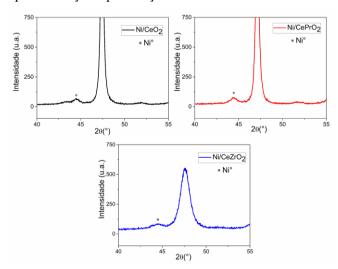

A Tabela 1 apresenta os resultados de tamanho de cristalito e parâmetro de rede das amostras calcinadas.

Tabela 1. Tamanho de cristalito de CeO₂ e NiO e parâmetro de rede de CeO₂ para os catalisadores após calcinação.

		,
Parâmetro de	Tamanho de	Tamanho de
rede CeO ₂	Cristalito de	Cristalito de
(Å)	CeO_2 (nm)	NiO (nm)
5,402	9,04	-
5,438	4,94	-
5,354	2,74	-
,		
	rede CeO ₂ (Å) 5,402 5,438	rede CeO ₂ Cristalito de CeO ₂ (nm) 5,402 9,04 5,438 4,94

No catalisador Ni/CeO₂, o parâmetro de rede da céria foi de 5,402 Å. A incorporação de Zr reduziu esse valor para 5,354 Å devido ao menor raio iônico do Zr⁴⁺, enquanto a dopagem com Pr aumentou para 5,438 Å por causa do maior raio iônico do Pr³⁺, resultando na contração e expansão da rede, respectivamente, e indicando a formação de uma solução sólida. Além disso, a ausência das linhas de NiO (PDF#47-1049) sugere alta dispersão das partículas. O tamanho do cristalito de CeO₂ foi de 9,0 nm, reduzindo para 4,9 nm com Pr e 2,7 nm com Zr, sendo este último o mais eficaz na inibição da sinterização e no aumento da estabilidade térmica dos suportes.

A Figura 3 apresenta os difratogramas dos catalisadores após a redução e passivação.

Figura 3. Difratograma de raios X dos catalisadores reduzidos a 750 °C e passivados, $2\theta = 40 - 55^{\circ}$.

Além das linhas correspondentes ao CeO_2 , foi detectada uma linha de difração do Ni metálico (PDF#4-850) em 2θ = 45° para todas as amostras.

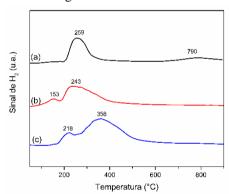

A Tabela 2 apresenta os resultados de tamanho de cristalito e parâmetro de redepara os catalisadores reduzidos e passivados.

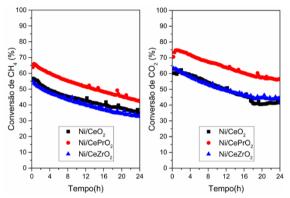
Tabela 2. Tamanho de cristalito de CeO₂ e Ni⁰ e parâmetro de rede de CeO₂ para os catalisadores após reducão e passivação.

e eeo ₂ para os edamsadores apos redação e passivação.				
Parâmetro de	Tamanho de	Tamanho de		
r rede CeO ₂	Cristalito de	Cristalito de		
(Å)	CeO_2 (nm)	Ni ⁰ (nm)		
5,404	22,45	14,33		
5,439	17,09	10,11		
5,357	7,20	8,52		
	r rede CeO ₂ (Å) 5,404 5,439	r rede CeO ₂ Cristalito de CeO ₂ (nm) 5,404 22,45 2 5,439 17,09		

O tamanho dos cristalitos de CeO₂ aumentou após a redução em todos os catalisadores. No entanto, o menor crescimento foi observado no catalisador Ni/CeZrO₂, cujo tamanho dos cristalitos aumentou de 2,74 para 7,20 nm. As amostras contendo Pr e Zr apresentaram menores tamanhos de cristalitos de Ni⁰. Os valores dos parâmetros de rede foram comparáveis aos obtidos para as amostras calcinadas.

Os perfis de TPR dos catalisadores à base de Ni estão apresentados na Figura 4.

Figura 4. Perfil de TPR dos catalisadores: (a) Ni/CeO₂, (b) Ni/CePrO₂ e (c) Ni/CeZrO₂.


Todos os catalisadores exibiram um pico de consumo de hidrogênio entre 243 e 358 °C, indicativo da redução de NiO a Ni^o. A introdução de Zr na céria deslocou este pico para temperaturas mais elevadas, sugerindo uma interação mais forte entre o metal e o suporte, o que pode explicar o menor tamanho dos cristalitos de Ni observado no catalisador suportado em óxido de CeZrO₂ (7).

Na amostra não dopada, observou-se consumo de H_2 em temperaturas mais altas (790 °C), associado à redução de CeO_2 na forma *bulk*. Adicionalmente, foram detectados picos menores em 218 e 153 °C nas amostras contendo Zr e Pr, respectivamente, devido à deposição de nitratos residuais (8).

O grau de redução do Ni/CeO₂ em temperaturas abaixo de 790 °C foi de 95 %. No entanto, para as amostras contendo Pr e Zr, os valores de grau de redução foram superiores a 100 %, especialmente na amostra dopada com Zr (228 %). Esse comportamento pode ser atribuído à redução do NiO e do CeO₂ promovida pelo Ni^o em baixas temperaturas (9). Esses resultados indicam que as amostras dopadas apresentaram maior capacidade de redução abaixo de 500 °C, seguindo a ordem: Ni/CeO₂ < Ni/CePrO₂ < Ni/CePrO₂.

A Figura 5 apresenta as conversões de CH_4 e CO_2 em função do tempo de operação (TOS) obtidas para a DRM a $800\,^{\circ}C$ e razão molar CH_4/CO_2 de 1,0, para os catalisadores de Ni suportados.


Figura 5. Conversões de metano e CO₂ para todos os catalisadores durante DRM a 800 °C e razão CH₄/CO₂ igual a 1.

A conversão inicial de metano e de CO_2 foi de cerca de 55-65 % e 60-75 %, respectivamente. A presença de Zr não afetou significativamente as conversões de metano e CO_2 . A conversão de CO_2 foi superior à conversão de metano, e uma desativação foi observada para todos os catalisadores durante 24 h de TOS.

Quanto à seletividade para os produtos, todas as amostras apresentaram formação de H_2 , COe H_2 O. Os valores iniciais da razão molar H_2 /CO variaram entre 0,71 e 0,80. Os valores de conversão de CO₂ superiores à conversão de CH₄, razões molares H_2 /CO menores que 1,0 e a formação de água indicam a ocorrência da reação reversa de deslocamento de água (RWGS) (10).

As amostras foram caracterizadas após a reação por meio de análises de MEV e ATG para investigar a formação de carbono. As análises de MEV apresentadas na Figura 6 mostraram a presença de filamentos de carbono apenas para os catalisadores Ni/CeO₂ e Ni/CePrO₂, indicando uma alta resistência à formação de carbono para o catalisador Ni/CeZrO₂.

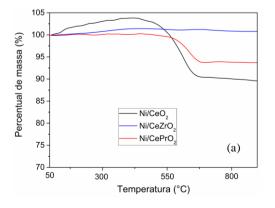


Figura 6. Micrografias dos catalisadores após teste catalítico a 800 °C e razão CH₄/CO₂ igual a 1: (a) Ni/CeO₂, (b) Ni/CePrO₂ e (c) Ni/CeZrO₂.

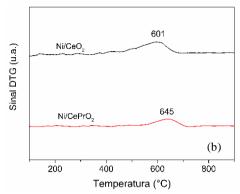

A taxa de formação de carbono durante 24 h de TOS está reportada na Tabela 3. Os perfis de ATG e DTG (derivada termogravimétrica) são apresentados na Figura 7(a-b).

Tabela 3. Taxa de formação de carbono obtida por ATG para todos os catalisadores após DRM a $800\,^{\circ}\text{C}$ e diferentes razões CH_4/CO_2 .

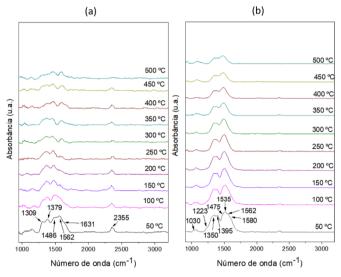
Catalisador	Razão CH ₄ /CO ₂	Taxa de formação de carbono (mgC.g _{cat} -1.h-1)
Ni/CeO ₂	1,0	28,4
Ni/CePrO ₂	1,0	10,4
	0,67	0,0
Ni/CeZrO ₂	1,0	0,0
	1,5	4,1

Figura 7. Perfil de ATG (a) e DTG (b) dos catalisadores após DRM a 800 °C e CH₄/CO₂ igual a 1.

As curvas de DTG revelam que as maiores perdas de massa dos catalisadores usados Ni/CeO₂ e Ni/CePrO₂ ocorreram a 601 e 645 °C, respectivamente, o que implica na formação de carbono cristalino, como carbono filamentoso ou grafítico (11).

Para a razão CH₄/CO₂ igual a 1,0, a maior deposição de carbono foi observada no Ni/CeO₂ (28,4 mgC.gcat⁻¹.h⁻¹), enquanto a adição de Pr à céria reduziu essa formação (10,4 mgC.gcat⁻¹.h⁻¹), e nenhuma deposição foi detectada na amostra dopada com Zr.

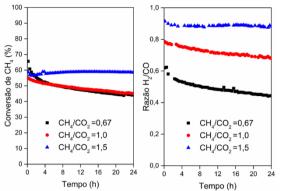
Estudos anteriores (12,13) mostraram que a formação de carbono em catalisadores Ni/CeO₂ aumenta com o tamanho do cristalito de níquel, atingindo um máximo em torno de 20-30 nm, e é reduzida em partículas menores que 10 nm. Além disso, a mobilidade de oxigênio do suporte influencia a formação de carbono, com suportes de alta mobilidade promovendo a oxidação do carbono e prevenindo sua deposição. A ausência de depósitos de carbono no catalisador Ni/CeZrO₂ pode ser atribuída a sua maior capacidade de redução, conforme revelado pela análise de TPR, resultando em mais vacâncias de oxigênio, e ao menor tamanho dos cristalitos de níquel, abaixo de 10 nm, o que suprime a formação de depósitos de carbono.


A desativação observada nas amostras dopadas, apesar da menor formação ou até ausênciade carbono em comparação com a amostra não dopada, pode estar relacionada ao acúmulo de espécies carbonato adsorvidas na superfície do catalisador, consideradas espécies inativas de CO₂, que podem bloquear os sítios ativos responsáveis pela ativação do CO₂ (4).

Assim, para avaliar o efeito da redutibilidade na formação de carbonatos, foram realizadas análises de DRIFTS sob uma mistura de CO₂ em He nos catalisadores Ni/CeO₂ e Ni/CeZrO₂. A Figura 8 mostra os espectros de DRIFTS obtidos em diferentes temperaturas.

Para o catalisador Ni/CeO₂, a 50 °C, são observadas bandas a 1309, 1379, 1486, 1562, 1631 e 2355 cm⁻¹. As bandas a 1309 e 1562 cm⁻¹ podem ser atribuídas a carbonatos bidentados, enquanto as bandas em 1379 e

1486 cm⁻¹ estão relacionadas à presença de carbonatos monodentados. As bandas a 1631 e 2355 cm⁻¹ podem ser associadas, respectivamente, a bicarbonatos e a CO₂ na fase gasosa (14).


Figura 8. Análise de DRIFTS para a dessorção de CO_2 em diferentes temperaturas para os catalisadores: (a) Ni/Ce O_2 e (b) Ni/Ce ZrO_2 .

O aumento da temperatura resultou em uma diminuição na intensidade das bandas. No entanto, ainda se observa a presença de carbonatos na superfície a 500 °C, com predominância dos carbonatos monodentados.

Os espectros de DRIFTS obtidos para o catalisador suportado em CeZrO2 são semelhantes aos de Ni/CeO2, mas com bandas mais intensas e definidas. A 50 °C, foram detectadas bandas correspondentes aos carbonatos bidentados (1350, 1562 e 1580 cm⁻¹), aos bicarbonatos (1030 e 1223 cm⁻¹) e aos carbonatos monodentados (1535, 1395 e 1475 cm⁻¹). Em temperaturas acima de 300 °C, a intensidade das bandas dos carbonatos bidentados e dos bicarbonatos diminuiu. enquanto OS carbonatos monodentados ainda estão presentes, mesmo a 500 °C. Almeida et al. (15) observaram resultados semelhantes em análises de DRIFTs sob uma mistura de CO2 e He para catalisadores de Ru/CeO2 e CeZrO2.

Assim, os resultados sugerem que os carbonatos monodentados se mantém adsorvidos na céria em altas temperaturas, particularmente para a amostra dopada com Zr. Portanto, eles podem ser diretamente responsáveis pela desativação através do bloqueio dos sítios ativos nas superfícies de CeO₂ e CeZrO₂. Como a amostra dopada com Zr apresentou a menor formação de carbono, o efeito da razão molar CH₄/CO₂ no desempenho desse catalisador foi avaliado. A conversão de metano e a razão molar H₂/CO obtidas para Ni/CeZrO₂, usando diferentes razões molares CH₄/CO₂, estão apresentadas na Figura 9.

Figura 9. Conversões de metano e razão H_2/CO para o catalisador Ni/CeZrO₂ durante DRM a 800 °C e razão CH_4/CO_2 igual a 0,67; 1,0 e 1,5.

Inicialmente, o aumento na razão molar CH₄/CO₂ leva a uma diminuição na conversão de CH₄, um aumento na razão molar H₂/CO e uma redução na formação de H₂O. Khajenoori et al. (16) estudaram o desempenho de catalisadores 10% Ni-7% CeO₂/MgO para a reforma seca do metano a 700 °C e diferentes razões molares CH₄/CO₂. Eles também observaram uma redução nos valores de conversão inicial de metano quando a razão CH₄/CO₂ foi aumentada. A diminuição na quantidade de CO₂ não favoreceu a RWGS, levando a uma maior seletividade para H₂ e a uma redução na formação de H₂O.

Além disso, somente na maior razão molar CH₄/CO₂, ocorreu formação de carbono (4,1 mgC.gcat⁻¹.h⁻¹) (Tabela 3). A formação de carbono depende do equilíbrio entre duas etapas: a decomposição do metano e a dissociação do CO₂. Quando a quantidade de metano aumenta, a formação de carbono na superfície das partículas metálicas também aumenta, enquanto a quantidade de oxigênio fornecido pelo CO₂ é menor, levando a um desequilíbrio e ao acúmulo de carbono.

Por outro lado, o aumento da razão molar CH₄/CO₂ melhorou a estabilidade do catalisador, apesar do aumento na formação de carbono. Considerando que, além da deposição de carbono, o acúmulo de espécies carbonato também pode ser uma das causas da desativação do catalisador, a diminuição da quantidade de CO₂ na corrente pode levar a uma redução na formação dessas espécies.

Conclusões

A dopagem da céria com Pr e Zr alterou os parâmetros de rede, confirmando a formação de uma solução sólida via DRX. O catalisador dopado com Zr apresentou maior redutibilidade. Durante a reação de DRM a 800 °C (razão CH₄/CO₂ = 1,0), todos os catalisadores desativaram. A formação de carbono, detectada por MEV e ATG, ocorreu nos catalisadores não dopado e dopado com Pr, mas não no Ni/CeZrO₂, devido ao menor tamanho das partículas de Ni (<10 nm). A desativação dos catalisadores dopados pode

estar relacionada a carbonatos adsorvidos bloqueando os sítios ativos para CO₂. No Ni/CeZrO₂, o aumento da razão CH₄/CO₂ favoreceu a formação de H₂ e reduziu a formação de H₂O, indicando menor influência da reação RWGS. A formação de carbono ocorreu apenas em razões mais altas de CH₄/CO₂, possivelmente devido ao desequilíbrio entre as taxas de decomposição do metano e dissociação do CO₂. Ainda assim, o Ni/CeZrO₂ mostrou maior estabilidade nessas condições, atribuída à menor formação de carbonatos.

Agradecimentos

Os autores deste trabalho agradecem a CAPES (Código de Financiamento 001) pelo apoio financeiro, à Faperj (Processo: E-26/211.335/2021e ao CNPq (Processo: 407883/2022-3).

Referências

- T. Abdullahi; Z. Harun; M. H. D. Othman, *Adv. Powder Technol.* 2017, 28, 1827-1840.
- 2. C. Vogt; J. Kranenborg; M. Monai; B, M. Weckhuysen, *ACS Catal.* **2020**, 10, 765-769.
- 3. S. Aghamohammadi; M. Haghighi; M. Maleki; N. Rahemi, *J. Mol. Catal.* **2017**, 431, 39-48.
- 4. M. A. Vasiliades; C. M. Damaskinos CM; M. Lykaki; et al, *Appl Catal B.* **2024**, 350, 123906.
- 5. H. N. S. Cozendey; D. M. Prata; G. B. A. Lima; et al, *J. Clean Prod.* **2018**, 200, 598-608.
- 6. Y. Wang; Y. Zhao Y; J. Lv J; X. Ma, *ChemCatChem.* **2017**, 9, 2085-2090.
- 7. F. B. Passos; E. R. de Oliveira; L. V. Mattos; F. B. Noronha. *Catal Today*. **2005**, 101, 23–30.
- 8. G. T. Wurzler; R. C. Rabelo-Neto; L. V. Mattos; M. A. Fraga; F. B. Noronha. *Appl Catal A*, **2016**, 518, 115-128.
- 9. H. Borchert; Y. V. Frolova; V. V. Kaichev; et al. *J. Phys. Chem. B.* **2005**, 109, 5728–5738.
- 10. W. J. Jang; J. O. Shim; H. M. Kim HM; et al. *Catal Today*. **2019**, 324, 15–26.
- 11. J. W. Han; C. Kim C; J. S. Park; H. Lee H. *ChemSusChem.* **2014**, 7, 451–456.
- 12. R. O. da Fonseca; A. R. Ponseggi; R. C. Rabelo-Neto; et al. *J. CO*₂ *Util.* **2022**, 57, 101880.
- 13. A. L. A. Marinho; R. C. Rabelo-Neto; F. Epron; et al. *Appl Catal B.* **2020**, 268.
- A. C. Arenas; A. Quindimil; A. Davó-Quiñonero; E. Bailón-García; D. Lozano-Castelló; U. De-La-Torre; B. Pereda-Ayo; J. A. González-Marcos; J. R. González-Velasco; A. Bueno-López. Appl Catal B. 2020, 265, 118538.
- M. P. Almeida; L. V. Mattos; S. Walker; M. Ayala; C. D. Watson; G. Jacobs; R. C. Rabelo-Neto; M. Akri; S. Paul; F. B. Noronha. *Appl Catal B.* 2025, 365, 124986
- 16. M. Khajenoori; M. Rezaei; F. Meshkani. *J. Indust. Eng. Chem.* **2015**, 21, 717–722.