

Co-imobilização de lipases e seu uso em reações de esterificação

Melyssa Oliveira de Assis; Igor Menezes da Silva; Christyan de S. S. Tiago, Gabrielle A.R. da Silva, Marta A.P. Langone*

Laboratório de Tecnologia Enzimática, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, PHLC, sl. 325, 20550-900, Rio de Janeiro - RJ, Brasil.

*marta.langone@gmail.com

Resumo/Abstract

RESUMO - Lipases são enzimas versáteis que atuam como biocatalisadores em reações de hidrólise, esterificação e transesterificação. A imobilização dessas enzimas é uma estratégia eficaz para aumentar sua estabilidade térmica, facilitar a recuperação e reutilização do biocatalisador e contribuir para a obtenção de produtos com maior pureza. Este trabalho teve como objetivo avaliar a imobilização e a co-imobilização de três lipases comerciais — lipase B de *Candida antarctica* (CalB), lipase de *Thermomyces lanuginosus* (TLL) e lipase de *Rhizomucor miehei* (RML) — em sílica-alumina (Siral 40) por adsorção física, bem como investigar seu desempenho em reações de esterificação. As lipases individuais (CalB, TLL, RML) e suas combinações (CalB-RML, CalB-TLL, RML-TLL, CalB-RML-TLL) apresentaram elevada eficiência de imobilização (>80%) quando 10 mL da solução enzimática, contendo 1 mg/mL de proteína total, foram utilizadas para a imobilização em 1 g do suporte Siral 40. As atividades de esterificação foram determinadas, e os biocatalisadores mais promissores foram empregados na síntese de oleato de etila. O efeito da temperatura (30, 40, 50 e 60 °C) foi avaliado, e os resultados indicaram que os biocatalisadores imobilizados apresentaram maior estabilidade térmica em comparação com as enzimas na forma livre. Os biocatalisadores também foram avaliados na síntese de levulinato de etila a 40 °C. Nessa reação, apenas os derivados imobilizados da CalB apresentaram atividade catalítica, promovendo a esterificação entre o ácido levulínico e o etanol.

Palavras-chave: lipases, co-imobilização, oleato de etila, levulinato de etila

ABSTRACT - Lipases are versatile enzymes that act as biocatalysts in hydrolysis, esterification, and transesterification reactions. The immobilization of these enzymes is an effective strategy to enhance their thermal stability, facilitate catalyst recovery and reuse, and contribute to obtaining products with higher purity. This study aimed to evaluate the immobilization and co-immobilization of three commercial lipases — *Candida antarctica* lipase B (CALB), *Thermomyces lanuginosus* lipase (TLL), and *Rhizomucor miehei* lipase (RML) — on silica-alumina (Siral 40) via physical adsorption, as well as to investigate their efficiency in esterification reactions. Individual lipases (CalB, TLL, RML) and their combinations (CalB-RML, CalB-TLL, RML-TLL, CalB-RML-TLL) exhibited high immobilization efficiency (>80%) when 10 mL of enzyme solution containing 1 mg/mL of total protein were used for immobilization on 1 g of Siral 40 support. Esterification activities were determined, and the most promising biocatalysts were employed in the synthesis of ethyl oleate. The effect of temperature (30, 40, 50, and 60 °C) was evaluated, and the results indicated that the immobilized biocatalysts exhibited greater thermal stability compared to the free enzymes. The biocatalysts were also evaluated in the synthesis of ethyl levulinate at 40 °C. In this reaction, only the immobilized CalB derivatives showed catalytic activity, promoting esterification between levulinic acid and ethanol.

Keywords: lipases, co-immobilization, ethyl oleate, ethyl levulinate

Introdução

Lipases (EC 3.1.1.3) são enzimas da classe das hidrolases, reconhecidas como os catalisadores mais versáteis e importantes no campo da biotecnologia (1).

Apesar de sua importância, lipases na forma livre apresentam limitações operacionais significativas em ambientes industriais, como perda de atividade e estabilidade, além da dificuldade de recuperação e reutilização. Essas limitações, associadas à forma solúvel da enzima, tornam a separação dos produtos mais complexa.

Nesse contexto, a imobilização enzimática representa uma estratégia eficaz para contornar tais restrições, promovendo o aumento da estabilidade térmica e operacional, além de facilitar a recuperação e o reuso do biocatalisador (2,3).

Entre as diversas técnicas de imobilização, a adsorção física destaca-se por sua simplicidade, baixo custo e aplicabilidade industrial (4). Suportes inorgânicos porosos como sílica-aluminas, zeólitas e óxidos metálicos são amplamente utilizados, oferecendo alta área superficial, estabilidade térmica e propriedades estruturais ajustáveis que favorecem altas cargas enzimáticas e boa atividade catalítica (5,6,7).

Estudos anteriores do grupo investigaram a imobilização individual de três lipases comerciais amplamente utilizadas industrialmente — lipase B de Candida antarctica (CalB), lipase de Thermomyces lanuginosus (TLL) e lipase de Rhizomucor miehei (RML) em sílica-alumina (7,8). Contudo, em muitos processos, uma única enzima não é suficiente para catalisar todas as etapas da reação, sendo necessário o uso de múltiplas enzimas em sistemas multienzimáticos ou reações em cascata. As plataformas de imobilização desenvolvidas para enzimas individuais também podem ser adaptadas para a co-imobilização de enzimas, influenciando diretamente sua orientação e sinergia funcional.

Este trabalho teve como objetivo avaliar a coimobilização de lipases em Siral 40, uma sílica-alumina mesoporosa. A lipase CalB, uma enzima não específica, foi co-imobilizada com TLL e RML, lipases 1,3-específicas. Os derivados enzimáticos obtidos foram avaliados em reações de esterificação, incluindo a síntese de oleato de etila e levulinato de etila, com o objetivo de explorar o potencial sinérgico das co-imobilizações e ampliar a aplicabilidade desses biocatalisadores em processos sustentáveis.

Experimental

Materiais

Neste trabalho, foram estudadas a imobilização e a coimobilização das seguintes lipases livres em sílica-alumina Siral 40: CalB (lipase B de Candida antarctica), Lipolase® 100L (lipase de *Thermomyces lanuginosus*, TLL) e Palatase 20,000 L (lipase de Rhizomucor miehei, RML), todas fornecidas pela Novozymes Latin America Ltda. As preparações comerciais imobilizadas Novozym 435 (lipase B de C. antarctica imobilizada, N435), Lipozyme TLL IM (lipase de T. lanuginosus imobilizada, TLL IM) e Lipozyme RML IM (lipase de R. miehei imobilizada, RML IM), também da Novozymes, foram utilizadas para fins comparativos com os biocatalisadores imobilizados desenvolvidos neste estudo. A sílica-alumina Siral 40, uma sílica-alumina composta por aproximadamente 40% de óxido de alumínio (Al₂O₃) e 60% de dióxido de silício (SiO₂), foi gentilmente cedida por SASOL (Alemanha). Ácido oleico (C18:1) 90%, etanol (99%), e goma arábica foram obtidos da Vetec Química Fina Ltda. (Rio de Janeiro, Brasil). Ácido levulínico P.A. foi adquirido da Sigma-Aldrich (St. Louis, MO, USA).

Imobilização enzimática

A imobilização das lipases foi conduzida utilizando o suporte Siral 40 calcinado durante 4h a 500 °C. Para cada grama de suporte, foram adicionados 10 mL de solução enzimática contendo 1 mg/mL de proteína, preparada em tampão fosfato de sódio 5 mM (pH 7,0). Nos ensaios de coimobilização, foram utilizadas duas ou três lipases

comerciais na concentração total de 1,0 mg de proteína total por mililitro de solução, sendo 0,5 mg/mL, ou 0,33 mg/mL, respectivamente de cada enzima. Essa abordagem permitiu avaliar a eficiência de imobilização individual e em combinação, mantendo a carga proteica constante.

Os tubos com a mistura (enzima + suporte) foram submetidos à agitação suave, em placas de rolos, por 2 horas. Amostras do sobrenadante foram retiradas em intervalos regulares para quantificação da proteína, a fim de verificar a eficiência da imobilização ao longo do tempo. A dosagem de proteínas foi realizada pelo método de Bradford (9), utilizando albumina de soro bovino como padrão.

A eficiência de imobilização foi calculada de acordo com a equação:

$$E(\%) = \frac{(ci - cf)}{ci} x 100$$
, onde:
C_i = Concentração inicial;

C_f = Concentração final, após a imobilização.

A concentração de proteínas das lipases comerciais CalB, TLL e RML foi determinada e os valores encontrados foram de 6,23; 1,78 e 20,70 mg/mL, respectivamente. A atividade específica foi de 30,2U/mg, 107,5 U/mg e 2,3 U/mg.

Determinação da atividade de esterificação

A atividade de esterificação foi determinada pela reação modelo de esterificação entre o ácido oleico e o etanol, utilizando 15 mmol de ácido oleico e de etanol (razão molar de 1:1) e 5% v/v de enzima livre ou 5% m/m de lipases imobilizada. A reação foi acompanhada por 2 horas em reator encamisado com controle de temperatura (30 °C) e sob agitação magnética. Alíquotas (50µL) foram retiradas em intervalos regulares e analisadas por volumetria de neutralização em titulador automático (Mettler T-50), utilizando NaOH a 0,02 mol/L.

A atividade de esterificação (U) foi definida como a quantidade de enzima necessária para consumir 1 µmol de ácido oleico por minuto por grama ou mililitro da preparação enzimática. A atividade foi determinada com base na velocidade inicial da reação nas condições reacionais estudadas (10).

Reação de esterificação – síntese de oleato de etila

Os derivados imobilizados e co-imobilizados foram avaliados na reação modelo de esterificação entre o ácido oleico (15 mmol) e o etanol (15 mmol) e sua eficiência comparada com os biocatalisadores comerciais imobilizados (N435, TLL IM e RML IM). As reações ocorreram em reatores encamisados, a 30 °C, sob agitação magnética durante 2 horas. Foram adicionados 5% v/v ou 5% m/m de enzima com relação a quantidade total dos reagentes. O acompanhamento da reação foi realizado por volumetria de neutralização em titulador automático (Mettler T-50), utilizando NaOH a 0,02 mol/L.

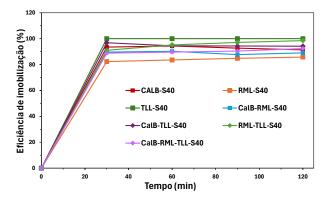
Avaliação do efeito da temperatura na síntese de oleato de etila

Os derivados imobilizados com maior atividade catalítica foram utilizados nas reações para avaliação do efeito da temperatura na síntese de oleato de etila. As reações foram conduzidas com 80 unidades de atividade (80 U), empregando 15 mmol de ácido oleico e de etanol (razão molar 1:1) nas temperaturas de 30°C, 40°C, 50°C e 60°C.

Reação de esterificação - síntese de levulinato de etila

A síntese do levulinato de etila foi investigada a 40°C, utilizando t-butanol como solvente (50% v/v). As reações foram conduzidas com 80 unidades de atividade (80 U), empregando 15 mmol de ácido levulínico e etanol (razão molar 1:1). Alíquotas (50 μ L) foram coletadas em intervalos regulares e tituladas com solução de NaOH 0,02 mol L⁻¹, utilizando titulador automático Mettler, modelo T50.

Resultados e Discussão


Imobilização e co-imobilização das lipases

Diversos suportes têm sido avaliados para a imobilização de lipases, sendo essencial que apresentem propriedades como inércia química, estabilidade térmica e resistência mecânica (7). Neste estudo, foi utilizada a Siral 40, uma sílica-alumina mesoporosa caracterizada por elevada área superficial (451 m² g⁻¹) e volume de mesoporos de 0,845 cm³ g⁻¹, com predominância de poros entre 50 e 100 Å — dimensões adequadas para acomodar lipases como TLL (53 Å), CalB (39,2 Å) e RML (41 Å) (6,8).

A cinética de imobilização e co-imobilização obtidas estão apresentadas na Figura 1, tendo sido determinada em função da concentração de proteína presente no sobrenadante. Todos os sistemas enzimáticos testados apresentaram eficiência superior a 80%, e a cinética de adsorção revelou que, após aproximadamente 30 minutos, o processo atinge um platô, indicando o equilíbrio da imobilização. A eficiência de imobilização também foi determinada com base na redução da atividade enzimática no sobrenadante após 2 horas de imobilização. Os valores de eficiência determinados por este método também foram eelvados (> 95%). Esses resultados demonstram que 120 minutos são suficientes para a adsorção em Siral 40, nas condições experimentais adotadas.

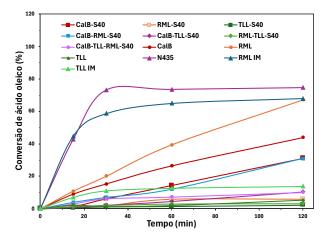
A imobilização por adsorção física ocorre por meio de forças fracas e não específicas, como interações hidrofóbicas, ligações de hidrogênio, forças de Van der Waals e ligações iônicas. A elevada área superficial, aliada ao volume de poros e à presença de sítios ácidos de Brønsted e de Lewis na superficie do Siral 40, favorece interações eletrostáticas com grupos amino das enzimas, contribuindo para a elevada eficiência de imobilização observada.

Figura 1. Eficiência de imobilização e da co-imobilização das lipases CalB, RML e TLL, utilizando solução enzimática com concentração proteica total de 1 mg/mL. Os experimentos foram realizados à temperatura ambiente $(25\pm1\,^{\circ}\text{C})$, em pH 7, empregando tampão fosfato de sódio 5mM.

Reação de esterificação – síntese de oleato de etila

A reação de esterificação entre ácido oleico e etanol, catalisada por lipases, representa uma alternativa mais sustentável em relação ao uso de catalisadores químicos convencionais, como o ácido sulfúrico, uma vez que opera sob condições mais brandas e gera menor quantidade de resíduos. Neste estudo, essa reação foi adotada como modelo, considerando o potencial de aplicação das lipases na produção de biodiesel a partir de óleos ácidos, tendo sido também empregada para determinação da atividade de esterificação das lipases testadas.

O ácido oleico foi selecionado como ácido graxo modelo por ser o principal componente de óleos vegetais como soja e palma, além de apresentar estado líquido à temperatura ambiente e ampla aplicação em estudos relacionados à produção de biodiesel.


A utilização de óleos ácidos, por sua vez, constitui uma estratégia economicamente viável, já que são matérias-primas de baixo custo e abundantes. As lipases são capazes de catalisar tanto a esterificação de ácidos graxos livres (AGL) quanto a transesterificação de triglicerídeos, tornando-se especialmente promissoras para processos enzimáticos de síntese de biodiesel. Assim, a avaliação da eficiência de biocatalisadores na conversão de AGL presentes em óleos ácidos é de grande relevância (11).

Inicialmente, a reação de síntese de oleato de etila foi conduzida utilizando lipases livres (5% v/v) e lipases imobilizadas em Siral 40 (5% m/m). Como referência, também foram avaliadas lipases comerciais imobilizadas: N435, TLL IM e RML IM. Os resultados (Figura 2 e Tabela 1) revelaram maior atividade de esterificação para as lipases CalB e RML, tanto na forma livre quanto imobilizada, enquanto a TLL apresentou desempenho inferior, em concordância com dados prévios da literatura (12). Tais variações podem ser atribuídas às diferenças de seletividade

e especificidade das enzimas, de acordo com sua origem microbiana.

Entre os derivados obtidos por imobilização em Siral 40, destacaram-se os biocatalisadores CalB-S40 e CalB-RML-S40, que apresentaram desempenho catalítico superior na síntese de oleato de etila.

Figura 2. Reação de síntese do oleato de etila a partir de ácido oleico (15 mmol) e etanol (15 mmol), em razão molar 1:1, realizada a 30 °C, catalisada por lipases aplicadas na concentração de 5% (m/m) ou 5% (v/v).

Tabela 1: Atividade de esterificação das lipases imobilizadas e co-imobilizadas em Siral 40 (CalB-S40, RML-S40, TLL-S40, CalB-RML-S40, CalB-TLL-S40, CalB-RML-TLL-S40) e das lipases comerciais livres (CalB, RML, TLL) e imobilizadas (N435, RML IM, TLL IM).

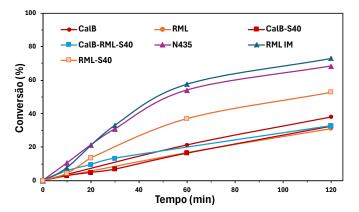
Biocatalisadores	Atividade de esterificação U mL ⁻¹ ou U g ⁻¹
CalB-S40	143,3
RML-S40	34,1
TLL-S40	13,5
CalB-RML-S40	111,3
CalB-TLL-S40	37,5
RML-TLL-S40	18,5
CalB	187,9
RML	191,3
TLL	48,2
N435	1274,6
RML IM	2024,8
TLL IM	143,1

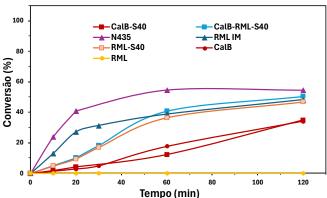
Avaliação do efeito da temperatura na síntese de oleato de etila

Para garantir uma avaliação comparativa padronizada dos biocatalisadores, as reações para avaliação do efeito da temperatura foram conduzidas utilizando quantidades equivalentes em unidades de atividade de esterificação (80

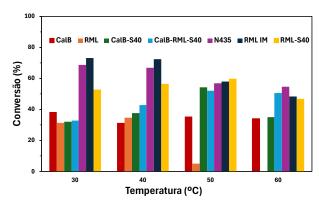
U), independentemente da forma enzimática empregada. Essa padronização foi necessária, uma vez que os derivados imobilizados apresentaram teores proteicos significativamente inferiores àqueles encontrados na mesma massa das preparações comerciais. Além disso, as lipases comerciais livres apresentam concentrações distintas de proteína: CalB (6,23 mg/mL), RML (1,78 mg/mL) e TLL (20,70 mg/mL), respectivamente. Portanto, o uso de uma mesma unidade de atividade permitiu comparar o desempenho catalítico de forma equitativa entre as diferentes formulações enzimáticas.

A Figura 3 apresenta os resultados obtidos, a 30 e 60 °C, para os biocatalisadores que demonstraram maior eficiência na síntese de oleato de etila, conforme evidenciado na Figura 2 e na Tabela 1, sendo excluídos, portanto, os biocatalisadores contendo a TLL. Observa-se que as lipases comerciais imobilizadas N435 e RML IM exibiram os maiores valores de conversão na maioria das temperaturas testadas, superando os biocatalisadores livres e aqueles imobilizados em Siral 40.


O aumento da temperatura levou a um aumento na velocidade inicial da reação até 50 °C, resultado do aumento da energia cinética das moléculas reagentes. No entanto, temperaturas superiores à faixa ótima podem levar à desnaturação enzimática, conforme observado nas reações conduzidas a 60 °C (Figura 3b). Cada enzima possui uma faixa de temperatura ideal, na qual sua atividade é máxima. Acima dessa faixa, as ligações fracas (hidrogênio, iônicas e hidrofóbicas) responsáveis pela manutenção da estrutura tridimensional da proteína começam a romper-se. Como consequência, a enzima perde sua conformação nativa, especialmente na região do sítio ativo, tornando-se inativa.


Essa desnaturação térmica foi mais pronunciada nas reações catalisadas pelas lipases livres CalB e RML, sendo a CalB mais estável ao aumento da temperatura. Por exemplo, a RML livre apresentou conversão inferior a 2% a 60 °C, enquanto a reação catalisada pela CalB alcançou 34% de conversão. A diferença de estabilidade enzimática pode ser atribuída a fatores como pH, solventes, tipo de substrato e, neste caso, origem da enzima.

De modo geral, enzimas imobilizadas apresentam maior estabilidade térmica do que suas formas livres. A ligação ao suporte pode restringir a flexibilidade estrutural da enzima e protegê-la contra a desnaturação térmica (7). Essa maior estabilidade foi confirmada nas reações com as formas imobilizadas de RML e CalB, incluindo o derivado de coimobilização CalB-RML-S40, que também demonstrou maior resistência à temperatura em comparação com as enzimas livres.



a) Síntese do oleato de etila a 30 °C

b) Síntese do oleato de etila a 60 °C

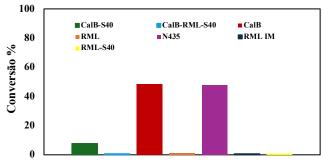
Figura 3. Efeito da temperatura na síntese do oleato de etila tilizando lipases livres (CalB e RML), imobilizadas em Siral 40 (CALB-S40, CALB-RML-S40) e lipases comerciais imobilizadas (N435 e RML LM), mantendo 80 U de atividade.

O efeito benéfico da imobilização enzimática é claramente evidenciado na Figura 4, que apresenta os valores de conversão de ácido oleico após 2 horas de reação com etanol. Observa-se que a RML sofreu uma queda expressiva na conversão a 60 °C, evidenciando a perda de atividade catalítica em função da desnaturação térmica. Em contraste, os derivados imobilizados em Siral 40 mantiveram níveis superiores de conversão, mesmo nessa temperatura mais elevada, demonstrando a eficácia da imobilização em preservar a estabilidade e a atividade enzimática. Ressalta-se também a maior estabilidade térmica do derivado obtido pela co-imobilização das lipases CalB e RML em Siral 40. Esses resultados destacam o desempenho promissor do Siral 40 como suporte para imobilização de lipases, contribuindo significativamente para a robustez do biocatalisador frente a condições térmicas mais severas.

Figura 4. Efeito da temperatura (30 °C, 40 °C, 50 °C e 60 °C) na conversão de ácido oleico. Condições reacionais: ácido oleico (15 mmol), etanol (15 mmol), 80 U de atividade de biocatalisador (enzimas comerciais livres e imobilizadas e lipases imobilizadas em Siral 40) e 2 horas de reação.

Reação de esterificação – síntese de levulinato de etila

A reação de esterificação entre o ácido levulínico e o etanol forma o levulinato de etila, um éster com aplicações relevantes em diversos segmentos industriais. O ácido levulínico, reagente dessa síntese, é classificado como uma das 12 principais plataformas químicas da química renovável (13). Lipases têm sido empregadas na produção de ésteres derivados do ácido levulínico, os quais apresentam potencial como aditivos para combustíveis (14).


Considerando a importância do levulinato de etila, os biocatalisadores que apresentaram maior atividade de esterificação também foram avaliados na reação entre ácido levulínico e etanol. As reações foram conduzidas na presença de t-butanol, como solvente na proporção de 50% v/v, tendo em vista o caráter inibitório do ácido levulínico para as lipases.

A Figura 5 apresenta os resultados de conversão obtidos na reação de síntese utilizando ácido levulínico com os biocatalisadores testados. Verifica-se que as maiores conversões foram alcançadas com os biocatalisadores derivados da lipase B de *Candida antarctica* (CalB, CalB-S40, N435). No entanto, a conversão obtida com o derivado CalB-S40 foi baixa, sugerindo que o suporte pode ter dificultado a interação entre os reagentes e a enzima. As reações catalisadas pelas lipases de *Rhizomucor miehei*, tanto na forma livre (RML) quanto imobilizada (RML IM -Palatase), resultaram em conversões inferiores a 1%. O biocatalisador obtido por co-imobilização das lipases (CalB-RML-S40) também não apresentou atividade catalítica.

Yadav e Borkar (15), em um estudo sobre a síntese de levulinato de butila, avaliaram o desempenho das lipases Novozym® 435, Lipozyme® RM e Lipozyme® TL. Os resultados mostraram que a Novozym® 435 apresentou a maior velocidade inicial de reação e a maior conversão de

ácido levulínico (85%) após duas horas de reação. Os autores atribuíram esse desempenho superior à ausência de uma 'tampa' (ou *lid*) no sítio ativo da enzima. Segundo os pesquisadores, a presença dessa estrutura nas demais lipases pode causar impedimentos estéricos, dificultando a ligação do ácido levulínico ao sítio ativo e, consequentemente, reduzindo sua eficiência catalítica.

Figura 5. Reação de esterificação entre o ácido levulínico (15 mmol) e etanol (15 mmol) a 40 °C, catalisada por enzimas comerciais livres e imobilizadas (CalB, RML, N435 e RML IM), e pelos derivados imobilizados (CalB-S40, RML-S40 e CalB-RML-S40) mantendo 80 U de atividade.

Conclusões

Este estudo demonstrou a viabilidade da imobilização e co-imobilização de lipases comerciais em sílica-alumina Siral 40 como estratégia eficiente para reações de esterificação. As lipases comerciais apresentaram alta eficiência de imobilização (>80%) no Siral 40. A coimobilização de CalB e RML (CalB-RML-S40) resultou em biocatalisador com estabilidade térmica superior aos obtidos com a enzima isolada (CalB-S40, RML-S40), mantendo atividade até 60 °C na reação de síntese de oleato de etila, com conversão similar à obtida com as lipases imobilizadas comerciais (N435, RML IM). Embora a atividade inicial dos derivados no Siral 40 tenha sido inferior às preparações comerciais, quando normalizados por unidades de atividade enzimática, os biocatalisadores imobilizados em Siral 40 exibiram maior estabilidade térmica, especialmente em temperaturas mais elevadas.

Na síntese de levulinato de etila, apenas os derivados imobilizados da CalB apresentaram atividade, embora com eficiência catalítica inferior à observada nas reações com ácido oleico. Esses resultados indicam que a seletividade pelo substrato, bem como sua ação em diferentes meios reacionais (com solvente) são fatores críticos no desempenho das lipases imobilizadas.

De forma geral, os dados obtidos reforçam o potencial da imobilização e co-imobilização de lipases em Siral 40 como alternativa viável para a produção de ésteres de interesse industrial, oferecendo vantagens como maior estabilidade térmica, reaproveitamento do biocatalisador e operação sob

condições mais brandas e sustentáveis. Estudos futuros podem explorar outras combinações de enzimas, a imobilização de quantidades maiores de proteína (como ocorre nas formulações comerciais) e condições reacionais otimizadas, com o objetivo de aprimorar ainda mais a eficiência e seletividade dos sistemas multienzimáticos.

Agradecimentos

Os autores agradecem à UERJ, ao CNPq e à Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro-FAPERJ (E-26/211.889/2021) pelo financiamento da pesquisa.

Referências

- R.A. Sheldon; J.M. Woodley, Chem. Rev. 2018, 118, 801-838.
- R.C. Rodrigues; C. Ortiz; A. Berenguer-Murcia; R. Torres; R. Fernandez-Lafuente, *Chem. Soc. Rev.* 2013, 42, 6290-6307.
- Y.R. Maghraby; R.M. El-Shabasy; A.H. Ibrahim;
 H. M El-Said, *ACS Omega.* 2023, *8*, 5184-5196.
- 4. U. Hanefeld; L. Gardossi; E. Magner, *Chem. Soc. Rev.* **2009**, *38*, 453-468.
- 5. F. Aghabeigi; H. Nikkah; H. Zilouei; M. Bazarganipour, *Proc. Bioch.* **2023**, *126*, 171-185.
- G.A.R. Da Silva, T.M.L.O. da Silva; J.P.S.Q. Menezes; E.C.T. Veloso; G.Z. Fontes-Santanna; N.R.C. Huaman, R. Brackmann, M.A.P. Langone, Catalysis Today. 2025, 445, 115099.
- K.C.N.R. Pedro; G.A.R. Da Silva, M.A.P. da Silva, C.A. Henriques, M.A.P. Langone *Catal. Today*. 2025, 477, 115141.
- 8. K.C.N.R. Pedro; J.V.V. da Silva; E.P. Cipolatti, E.A. Manoel; I.S.P. Campisano; C.A. Henriques; M.A.P. Langone, *3 Biotech.* **2023**, *13*, 260.
- 9. M.M Bradford, Anal. Biochem. 1976, 72, 248-254.
- K.C.N.R. Pedro; I.E.P. Ferreira; C.A. Henriques;
 M.A.P. Langone, *Chem. Eng. Comm.* 2019, 207.
- 11. M.S. De Paula; L.F.C. de Oliveira; F.T. Cunha; T.P.C. Gomes; P.I.N.M. Pereira; M.A.P. Langone, *Biomass Bioenergy.* **2021**, *144*, 105898.
- 12. K.C.N.R. Pedro; J.M. Parreira; I.N. Correia; C.A. Henriques; M.A.P. Langone, *Quím. Nova.* **2018**, *41*, 284-291.
- 13. A.F.S. Moreira; C.B. Souza; W. Pinheiro; F.A. de Freitas; E.R. Lachter, *Ver. Virtual Quim.* **2022**, *14*, 382.
- 14. K. Yan; C. Jarvis; J. Gu; Y. Yan, *Renew. Sust. Energ. Rev.* **2025**, *51*, 986-997.
- 15. G. Yadav; I.V. Borkar, *Proc. Bioch.* **2010**, *47*, 3358-3363.