



# Produção de H<sub>2</sub> a partir de bioetanol utilizando catalisadores de CuNi suportados via troca iônica ou impregnado em Nb<sub>2</sub>O<sub>5</sub>

Daiane Marques de Oliveira<sup>1</sup>, Marcos de Souza<sup>1</sup>, Fernando Alves da Silva<sup>2</sup>

<sup>1</sup>Departamento de Engenharia Química. Universidade Estadual de Maringá. Avenida Colombo, 5790, Maringá-PR.

## Resumo/Abstract

RESUMO - Este trabalho investiga a produção de hidrogênio (H<sub>2</sub>) a partir da reforma a vapor do bioetanol utilizando catalisadores bimetálicos de CuNi suportados em Nb<sub>2</sub>O<sub>5</sub>, preparados pelos métodos de troca iônica e impregnação. As amostras foram caracterizadas por técnicas de DRX, TPR-H<sub>2</sub>, DTP-NH<sub>3</sub> e adsorção de N<sub>2</sub>, além de testes catalíticos realizados a 450 °C. Os resultados indicam que o método de impregnação favorece uma maior interação metal—suporte (efeito SMSI), maior cristalinidade e melhor desempenho catalítico, com maior conversão de etanol e maior seletividade para H<sub>2</sub>. Já a troca iônica promoveu oxidação do etanol com menor produção de H<sub>2</sub>. A baixa acidez dos catalisadores, atribuída à dopagem com Na, inibiu reações paralelas de desidratação. O catalisador impregnado atingiu razão H<sub>2</sub>/CO<sub>2</sub> próxima à estequiométrica, demonstrando-se mais eficiente para a produção de hidrogênio.

Palavras-chave: reforma a vapor, bioetanol, hidrogênio, CuNi, Nb<sub>2</sub>O<sub>5</sub>.

ABSTRACT - This work investigates hydrogen (H<sub>2</sub>) production via steam reforming of bioethanol using bimetallic CuNi catalysts supported on Nb<sub>2</sub>O<sub>5</sub>, prepared through ion exchange and wet impregnation methods. The catalysts were characterized by XRD, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD, and N<sub>2</sub> adsorption techniques, and catalytic tests were performed at 450 °C. Results showed that the impregnation method enhanced metal–support interaction (SMSI effect), improved crystallinity, and led to better catalytic performance, with higher ethanol conversion and selectivity to H<sub>2</sub>. In contrast, the ion exchange catalyst favored ethanol oxidation and yielded less H<sub>2</sub>. The low acidity of both catalysts, due to Na doping, inhibited side dehydration reactions. The impregnated catalyst achieved an H<sub>2</sub>/CO<sub>2</sub> ratio close to the stoichiometric value, proving more efficient for hydrogen production. *Keywords: steam reforming, bioethanol, hydrogen, CuNi, Nb*<sub>2</sub>O<sub>5</sub>.

## Introdução

A busca por fontes alternativas e sustentáveis de energia tem impulsionado o desenvolvimento de tecnologias voltadas à produção limpa de hidrogênio (H<sub>2</sub>), um vetor energético de alta densidade e livre de emissões de carbono em sua combustão. Nesse cenário, a reforma a vapor do bioetanol (Equação 1) tem se destacado como uma rota promissora, por empregar uma matéria-prima renovável, amplamente disponível e com potencial neutro em carbono (1). No entanto, o sucesso dessa rota depende fortemente da eficiência e estabilidade dos catalisadores utilizados no processo.

$$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 6H_2$$
 (1)

Catalisadores contendo metais de transição, como cobre (Cu) e níquel (Ni), têm sido amplamente estudados devido ao seu baixo custo e boa atividade catalítica na quebra das ligações C–C e C–H do bioetanol (2). A combinação CuNi é particularmente atrativa, pois apresenta efeitos sinérgicos que resultam em maior dispersão dos metais ativos, melhor

resistência à sinterização e aumento da seletividade para H<sub>2</sub>, além de reduzir a formação de coque (3).

Paralelamente, o suporte exerce papel fundamental no desempenho catalítico. O óxido de nióbio (Nb<sub>2</sub>O<sub>5</sub>) tem se mostrado um suporte promissor por suas propriedades estruturais, texturais e de acidez superficial, que podem favorecer a ancoragem e distribuição dos metais ativos, além de contribuir para a estabilidade térmica do sistema (4). Ademais, o método de preparação do catalisador influencia diretamente essas características. Técnicas como a impregnação convencional ou a troca iônica têm sido exploradas por sua capacidade de modular a interação metal—suporte e, consequentemente, o desempenho catalítico (5).

A novidade deste trabalho reside na avaliação sistemática da interação entre a fase bimetálica CuNi e o suporte de óxido de nióbio (Nb<sub>2</sub>O<sub>5</sub>), uma combinação ainda pouco explorada para a reforma a vapor do bioetanol. Embora os componentes individuais sejam conhecidos, a influência direta de métodos de síntese contrastantes (impregnação vs. troca iônica) sobre a formação de ligas ou fases bimetálicas, a interação metal-suporte e a acidez superficial neste sistema

<sup>&</sup>lt;sup>2</sup>Coordenação de Engenharia Química. Universidade Tecnológica Federal do Paraná. Rua Marcílio Dias, 635, Apucarana-PR.

específico não estejam bem estabelecidas. Portanto, a principal contribuição deste estudo será estabelecer uma clara relação estrutura-atividade, demonstrando como a rota de síntese modula as propriedades físico-químicas do catalisador e como essas propriedades governam, por sua vez, a eficiência na produção de H<sub>2</sub>, a seletividade dos produtos e, fundamentalmente, a estabilidade a longo prazo. Espera-se que os resultados forneçam diretrizes para o desenho reacional de catalisadores mais robustos e eficientes para a valorização do bioetanol em hidrogênio.

Logo, este trabalho tem como objetivo investigar catalisadores bimetálicos de CuNi suportados em Nb<sub>2</sub>O<sub>5</sub>, preparados por diferentes métodos (impregnação e troca iônica), com foco na influência do metal, do suporte e do método de síntese sobre a atividade e estabilidade na reforma a vapor do bioetanol para produção de H<sub>2</sub>.

## Experimental

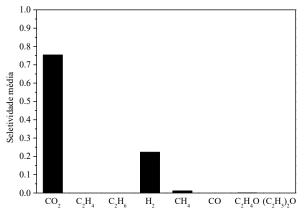
Síntese do Catalisador

Para o catalisador preparador por troca iônica, ácido nióbico (HY-340, CBMM, 76 %) em pó, e soluções de CuCl<sub>2</sub>.2H<sub>2</sub>O (Panreac), NiCl<sub>2</sub>.6H<sub>2</sub>O (Synth) e NaCl (Panreac) como dopante para ácido nióbico, foram mantidos sob agitação por 24 h com pH inicial em torno de 7,0. Após. o precursor foi filtrado, lavado com água destilada, secos em estufa 115 °C por 24 h e calcinado a 500 °C por 5 h. Para o catalisador obtido por impregnação úmida, HY-340 foi previamente calcinado a 500 °C por 5 h para obtenção de Nb<sub>2</sub>O<sub>5</sub>. Após, soluções de nitratos dos precursores Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O (Dinâmica) e Ni(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O (Neon), e como precursor dopante NaNO<sub>3</sub> (Dinâmica) foram adicionados ao suporte calcinado, mantidos sob agitação por 24 h a temperatura ambiente. Após o solvente ser evaporado, o precursor foi seco a 115 °C por 24 h em estufa e calcinado a 500 °C por 5 h para formação dos óxidos dos metais. Em ambos, o teor dos metais foi de 1% Cu, 5%Ni e 0,1%Na<sub>2</sub>O, previamente estabelecido e baseado em testes catalíticos onde houve menor produção de subprodutos estáveis (6).

## Caracterização

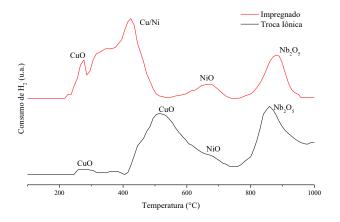
Os catalisadores foram submetidos à adsorção-dessorção de N<sub>2</sub> a 77 K para caracterização textural. As isotermas de adsorção obtidas foram utilizadas para determinação de área específica através do método BET. Com o objetivo de identificar o estado dos íons metálicos na estrutura do catalisador, foram realizadas análises de DRX (difração de raios X) pelo método do pó. Os difratogramas de raios X das amostras foram obtidos com 2θ variando entre 4° e 65°, com passo de 0,009° com radiação Cu-Ka. As linhas do difratograma foram identificadas com auxílio das fichas disponíveis no banco de dados do programa MDI JADE 5. A quantidade de hidrogênio, em função da temperatura (TPR-H<sub>2</sub>) avaliada utilizando-se 5 mg de fase ativa das amostras, pré-tratadas sob Ar, 30 mL/min; então, a mistura redutora foi inserida na mesma vazão e a reação aconteceu desde a temperatura ambiente até 1000 °C, a uma taxa de 10 °C/min. O gás efluente foi quantificado (em consumo de H<sub>2</sub>) por um medidor detector de condutividade térmica. Para verificar a acidez das amostras, uma unidade multipropósito CHEMBET 3000 da QuantaChrome Instruments com detector de condutividade térmica, usando cerca de 100 mg de amostra permitiu avaliar a dessorção de NH3 à temperatura programada (DTP-NH<sub>3</sub>). Inicialmente, a amostra foi submetida a um pré-tratamento a temperatura de 300 °C, com fluxo de nitrogênio, a uma vazão de 30 mL/min, por 1 h. As amostras foram previamente reduzidas com um mistura de 1,75% H<sub>2</sub>/N<sub>2</sub>, com taxa de aquecimento de 10 °C/min até 500 °C, e posteriormente resfriada a temperatura ambiente sob fluxo de N2. Procedeuse, então, a adsorção de amônia a 100 °C. Em seguida, a amônia fisissorvida foi removida com fluxo de N2 durante 2 h. A dessorção de NH<sub>3</sub> quimissorvida foi acompanhada numa taxa de 10 °C/min e a temperatura final foi de 700 °C. A quantificação da acidez total foi feita por comparação com padrão.

#### Testes Catalíticos


Os catalisadores foram avaliados em um micro reator de aço inox, em formato de U, com sistema de saturação e arraste de vapor por gás inerte. Foram utilizados 200 mg de catalisador, e a purga no sistema, sempre que necessária, foi realizada com fluxo de N<sub>2</sub>. Previamente aos testes catalíticos, as amostras foram pré-tratadas sob fluxo de 5% H<sub>2</sub>/N<sub>2</sub>, 30 mL/min, 450 °C durante 2 horas. Após, a razão molar de alimentação de 10:1 (água:etanol) foi ajustada utilizando banhos termostáticos nas temperaturas de 18 °C para etanol e 83 °C. O reator contendo o catalisador foi aquecido até a temperatura de reação de 450 °C sob fluxo de N<sub>2</sub>, e então N<sub>2</sub> saturado com água e etanol alimentados ao reator com WHSV de 37 dm³/h.g<sub>cat</sub>. Os testes foram realizados num período de 3 h de reação, com avaliação dos produtos a cada 30 min em linha por cromatografia a gás.

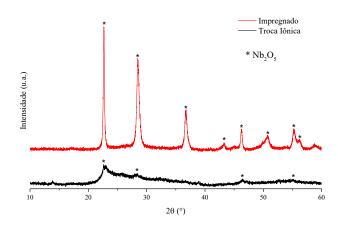
#### Resultados e Discussão

Em relação à atividade catalítica, infere-se que o processo de troca iônica não favoreceu a reação de reforma, mantendo-se elevada a fração de  $CO_2$  em relação ao  $H_2$ . Este resultado, apresentado na Figura 1, demonstra que o etanol sofreu preferencialmente oxidação, e não reforma a hidrogênio, conforme Equação 2.


$$C_2H_5OH + O_2 \rightarrow 2CO_2 + 3H_2O$$
 (2)

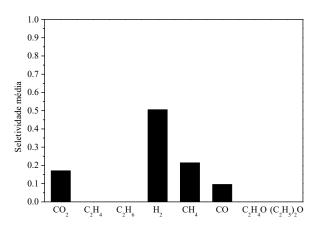
Neste caso, devido a não calcinação prévia do HY-340, a presença de radicais hidroxilas do ácido nióbico pode ter contribuído para a oxidação do álcool.




**Figura 1.** Distribuição de produtos obtido para o catalisador 1% Cu -5% Ni/Nb<sub>2</sub>O<sub>5</sub>-Na<sub>2</sub>O obtido por troca iônica. 200 mg de catalisador, razão molar C<sub>2</sub>H<sub>5</sub>OH : H<sub>2</sub>O = 1:10, GHSV = 37 dm<sup>3</sup>/h.g<sub>cat</sub>.

No catalisador preparado por impregnação, a formação de compostos intermediários entre metais e metais/suporte, observados através dos diversos picos de redução nos perfis de RTP-H<sub>2</sub> (Figura 2), o que sugere elevado grau de interação entre metal e suporte (SMSI). Para a amostra obtida por troca iônica, apesar da heterogeneidade dos óxidos de cobre e níquel na superfície, confirmados também pelos múltiplos estágios de redução, houve menor grau de cristalinidade da amostra. Logo, pode-se concluir que a incorporação dos metais da fase ativa impede a formação de Nb<sub>2</sub>O<sub>5</sub> em arranjo cristalino, conforme demonstrado pelo difratograma de raios X da Figura 3.




**Figura 2.** Perfis de redução à temperatura programada com hidrogênio para as amostras de catalisador 1% Cu -5% Ni/Nb<sub>2</sub>O<sub>5</sub>-Na<sub>2</sub>O obtidos por impregnação úmida e troca iônica.

Observou-se também maior cristalinidade obtida pela calcinação, com poucas alterações estruturais e morfológicas após a incorporação dos metais. Os óxidos de cobre ou níquel inseridos no suporte se apresentam mais heterogêneos para o catalisador obtido por troca iônica que o impregnado, confirmado pelo maior número de picos de consumo de H<sub>2</sub> durante o TPR.



**Figura 3.** Difratômetro de raios X obtido através do espalhamento da radiação CuKα para as amostras de catalisadores sintetizados por impregnação e troca iônica.

Este efeito de interação entre metais e suporte favoreceu a reação de conversão de etanol a H<sub>2</sub>, conforme apresentado na Figura 2. Em ambos os casos, observou-se conversão, e ausência de produtos de desidratação catalítica (etileno ou éter dietílico), o que foi atribuído à baixa acidez apresentada pelos catalisadores (Tabela 1) devido ao uso de dopante sobre os sítios ácidos do nióbio.



**Figura 4.** Distribuição de produtos obtido para o catalisador 1% Cu -5% Ni/Nb<sub>2</sub>O<sub>5</sub>-Na<sub>2</sub>O obtido por impregnação úmida. 200 mg de catalisador, razão molar C<sub>2</sub>H<sub>5</sub>OH : H<sub>2</sub>O = 1:10, GHSV = 37 dm<sup>3</sup>/h.g<sub>cat</sub>.

Pode-se observar que o método de impregnação favoreceu a reforma e, portanto, o método de impregnação foi mais eficiente que troca iônica para obtenção de H<sub>2</sub>, obtendo-se como razão dos produtos de reforma H<sub>2</sub>/CO<sub>2</sub> de 2,96, próximo a estequiométrica de 3. Além disso, a maior fração de H<sub>2</sub> em relação a CO<sub>2</sub> indica que o catalisador não oxida o álcool (Equação 2), como no caso de troca iônica em nióbia. A presença de CH<sub>4</sub> e CO indica que a rota deste catalisador segue a decomposição do etanol (Equação 3). Parte do CO permanece como subproduto, indicando que a reação *shift* (Equação 4) não converte este produto totalmente, devido ao equilíbrio químico dessa reação.

Pode-se afirmar também que a reforma em série de metano (Equação 5) não é completa, o que pode estar atribuído à estabilidade do metano frente ao baixo teor de níquel no catalisador.

$$C_2H_5OH \to CH_4 + CO + H_2 \tag{3}$$

$$CO + H_2O \leftrightarrow CO_2 + H_2 \tag{4}$$

$$CH_4 + H_2O \leftrightarrow CO + 3H_2 \tag{4}$$

Além disso, observa-se pela Figura 4 que o método de impregnação também garante maiores conversões. Considerando a distribuição de produtos e o consumo de água, confirma-se que o catalisador obtido por troca iônica não proporcionou a reação de reforma a hidrogênio. Entretanto, apesar da elevada conversão da água para o catalisador obtido por impregnação úmida (superior a estequiométrica), pode-se afirmar que este catalisador favorece a reação de reforma devido aos produtos obtidos (CH<sub>4</sub>, CO<sub>2</sub> e H<sub>2</sub>). Vale destacar que o sistema cromatográfico utilizado não permite quantificar o consumo de água de forma analítica. Apesar disto, a conversão e seletividade média do catalisador impregnado o torna mais atrativo para obtenção de hidrogênio.



Figura 4. Conversão de etanol e consumo da água durante os testes catalíticos para os catalisadores de troca iônica e impregnado.

**Tabela 1.** Propriedades texturais e superficiais obtidas por fisissorção de nitrogênio (área específica), amônia (DTP) e hidrogênio (RTP).

| Catalisador  | Área<br>específica<br>(m²/g) | Acidez<br>(mmol/g) | Picos de<br>consumo de<br>H <sub>2</sub> durante<br>TPR,<br>Cu / Ni (°C) |
|--------------|------------------------------|--------------------|--------------------------------------------------------------------------|
| Troca Iônica | 53                           | 0,009              | 335, 375, 485,<br>555 / 645, 683,<br>714                                 |
| Impregnação  | 45                           | 0                  | 275, 379 / 514,<br>592, 642, 703.                                        |

### Conclusões

A comparação entre os métodos de preparo dos catalisadores CuNi/Nb<sub>2</sub>O<sub>5</sub> revelou que a impregnação úmida

é mais eficiente que a troca iônica para a reforma a vapor do bioetanol. O catalisador impregnado apresentou maior interação metal-suporte, cristalinidade superior e melhor desempenho catalítico, com maior conversão de etanol e maior seletividade para hidrogênio. A razão H2/CO2 próxima da estequiometria e a ausência de produtos indesejados como etileno evidenciam a eficiência do sistema. A baixa acidez, conferida pela dopagem com sódio, foi benéfica para evitar reações paralelas. O melhor desempenho observado para o catalisador preparado por impregnação, portanto, foi atribuído à combinação entre maior interação metal-suporte (SMSI) e elevada cristalinidade. A forte interação SMSI pode contribuir para promover uma melhor ancoragem e dispersão dos metais Cu e Ni na superfície do Nb<sub>2</sub>O<sub>5</sub>, o que facilita a ativação das moléculas de etanol e água durante a reforma a vapor, aumentando a eficiência da quebra das ligações C-C e C-H. Já a maior cristalinidade pode ter contribuído para uma estrutura mais estável termicamente, reduzindo a formação de fases amorfas e defeitos que poderiam favorecer reações indesejadas ou a desativação catalítica. Assim, esses fatores estruturais atuam de forma sinérgica para elevar a atividade e a seletividade para H2, além de garantir maior estabilidade ao sistema catalítico ao longo do tempo de reação. Esses resultados destacam o potencial do sistema CuNi/Nb2O5 preparado por impregnação como alternativa promissora e sustentável para a geração de H2 a partir de fontes renováveis.

#### Referências

- J.L.C. Fajín, M.N.D.S. Cordeiro, Renew Sust Energ Rev, 10.1016/j.rser.2020.110523.
- 2. J.Long, H. Wu, Y. Liu, Y. Ding, Q. Yao, O. Metin, Z. Lu, *cMat*, **2024**, 10,1-41.
- 3. L. Chen, S.D. Lin, *Appl Catal B-Environ*, **2011**, 106, 639-649.
- 4. I.D. Pontes, M. deSouza, F.A. Silva, M.H.N.O. Scaliante, C.G. Alonso, G.S. Bianchi, A.M. Neto, G.M. Pereira, N.R.C.F. Machado, *Chem Eng J*, **2015**, 273, 66-74
- F.A. Silva, I.D. Pontes, G.T. Wurzler, C.G. Alonso, A.M. Neto, M.H.N.O. Scaliante, M. deSouza, N.R.C.F. Machado, *Int J Hydrogen Energy*, 2016, 8111-8119.
- 6. R. C. P. Rizzo, N.R.C. Fernandes-Machado, *Anais do 11º Congresso Brasileiro de Catálise*, **2001**, 678-682.