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Resumo/Abstract

RESUMO - O nitreto de carbono cristalino, especificamente a poli(heptazina imida) (PHI), tem se destacado como um suporte
catalitico promissor devido a sua estrutura robusta e propriedades eletronicas favoraveis, especialmente para a estabilizagdo de
atomos metalicos isolados. No entanto, identificar e caracterizar esses sitios isolados de forma confiavel continua sendo um
desafio significativo. Neste estudo, a adsor¢ao de CO foi empregada como molécula sonda em combinacdo com a espectroscopia
DRIFT-FTIR para investigar espécies de niquel dopadas em PHI. Em baixas cargas de niquel (0,5% e 1%), o CO se liga
predominantemente de forma linear a sitios isolados de Ni?*, como indicado por bandas caracteristicas em torno de 2190 cm™'. A
medida que o teor de niquel aumenta (2% e 4%), as bandas de CO se deslocam para menores nimeros de onda, € sinais associados
ao CO ligado em ponte tornam-se dominantes. Essa evolugdo espectral reflete um aumento na m-retrodoagdo e a formagao
progressiva de agregados de niquel, como clusters ou nanoparticulas. A diminuicao simultinea na intensidade das bandas lineares
de CO reforga essa transicao de espécies de Ni dispersas atomicamente para espécies agregadas. Céalculos de Teoria do Funcional
da Densidade (DFT) e DFT+U corroboram os resultados experimentais, fornecendo insights sobre os fatores estruturais e
eletronicos que impulsionam a m-retrodoagio e a evolugdo da especiagio do Ni em PHI.Palavras-chave: DRIFT-FTIR, Atomos
individuais, Caracterizacdo, Adsor¢ado.

ABSTRACT - Crystalline carbon nitride, specifically poly(heptazine imide) (PHI), has emerged as a promising catalyst
support due to its robust structure and favorable electronic properties, particularly for stabilizing isolated metal atoms. However,
reliably identifying and characterizing these isolated sites remains a significant challenge. In this study, CO adsorption was
employed as a probe molecule in combination with DRIFT-FTIR spectroscopy to investigate nickel species doped into PHI. At
low nickel loadings (0.5% and 1%), CO binds predominantly in a linear fashion to isolated Ni** sites, as indicated by characteristic
bands around 2190 cm™. As the Ni content increases (2% and 4%), the CO bands shift to lower wavenumbers, and signals
associated with bridge-bonded CO become dominant. This spectral evolution reflects enhanced m-backdonation and the
progressive formation of Ni aggregates, such as clusters or nanoparticles. The concurrent decrease in the intensity of linear CO
bands further supports this transition from atomically dispersed Ni to aggregated species. Density Functional Theory (DFT) and
DFT+U calculations corroborate the experimental results, providing insights into the structural and electronic factors driving -
backdonation and the evolution of Ni speciation on PHI.
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Therefore, this study proposes the use of CO adsorption

Introduce as a probe molecule, in combination with the DRIFT-FTIR

Crystalline carbon nitride (PHI) is a material with great
potential for catalytic applications, especially in
photocatalysis, due to its crystalline structure and excellent
electronic properties. Furthermore, PHI serves as a suitable
support for anchoring different active species, broadening
its range of applications(1).

Single metal atoms, in turn, can significantly enhance
catalytic activity compared to nanoparticles or clusters,
while also presenting lower costs. Despite these advantages,
the identification of single atoms remains challenging,
requiring advanced techniques and complementary methods
for confirmation(2).

technique, to identify single nickel atoms that doped into
carbon nitride. The vibrational frequency of adsorbed CO is
commonly employed to probe the charge state of metal
centers in single-atom catalysts, an approach supported by a
wealth of experimental and computational data on CO
interactions with metal surfaces and nanoparticles(3).

Experimental
PHI synthesis
PHI was prepared by ball-milling 1 g of melamine with
10 g of NaCl, followed by thermal treatment at 600 °C for 4
hours under a nitrogen flow (5 L min') with a heating rate
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of 2.3 °C min!. After cooling, the material was washed with

deionized water to remove residual salt(4).
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Figure 1. Synthesis of carbon nitride (PHI).

PHI/single-atom synthesis

Cation exchange was performed by dispersing PHI in
aqueous nickel solutions with varying concentrations. For
the synthesis of Ni-PHI with 0.5% nickel, 200 mg of Na-
PHI were added to a solution containing 0.02 mmol of
NiClz:6H20 and sonicated for 30 minutes. Catalysts with
different metal loadings (0.5%, 1%, 2%, and 4%) were
prepared by proportionally adjusting the nickel
concentration. After sonication, the suspension was
centrifuged to recover the solid, which was then dried
overnight at 80 °C.
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Figure 2. Cation exchange for the formation of Ni**-PHI.

CO-DRIFTS experiment

CO-DRIFTS analysis was carried out using a Nicolet
iS50 FTIR spectrometer equipped with a Praying Mantis
accessory and a Harrick cell. The sample was pretreated at
300 °C under a He flow (20 mL min™") for 10 minutes. After
cooling to room temperature, the He flow was stopped and
CO pulsing was initiated for 10 minutes. Physiosorbed CO
was then removed by Helium purging for 15
minutes.Spectra were collected at a resolution of 1 cm™ and
averaged over 256 scans.
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Figure 3. Process for obtaining the spectra of CO adsorption
in the material.

Theoretical Calculations

Spin-polarized DFT and DFT+U calculations were
performed using the VASP code(5) with the PBE functional
under the GGA framework(6, 7), and a plane-wave cutoff
energy of 400 eV. The DFT-D3 method accounted for van
der Waals interactions, and convergence criteria were set to
1 x 105 eV for energy and 0.05 eV-A~' for forces(8). A
Hubbard U correction of 3.40 eV was applied to better
describe the Ni electronic properties(9-11). Charge density
difference analyses were carried out using VASPKIT(12).

Results and discussion

Characterizations
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Figure 4. X-ray diffraction (XRD) of Na-PHI and Ni-PHI
with different concentrations (0.5, 1.0, 2.0, 3.0 and 4.0 %).

Figure 5. HAADF-STEM image of Ni-PHI 0,5%



Congresso Brasileiro de Catalise

——Ni Foil
— Ni-PHI 0.5%

FT (x(k)*k® (A%)

R (A)
Figure 6: Fourier transform of the EXAFS spectra of Ni*'-
PHI 0.5% and Ni foil.

The crystal structure of Na-PHI and Ni-PHI was analysed
using X-ray powder diffraction (XRD). Figure 4 shows the
XRD patterns of Na-PHI and Ni-PHI with increasing nickel
loadings (0.5-4%). The reflections at 8.3° and 14.2° indicate
the 2D ordering of heptazine units, while those between 25°
and 29° correspond to interlayer stacking. Upon nickel
coordination, these reflections are altered due to
electrostatic interactions between Ni** and the PHI
framework, leading to a gradual reduction in
crystallinity(13).

The dispersion and atomic distribution of nickel were
investigated using high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM). As
shown in Figure 5, the HAADF-STEM image reveals
individual nickel atoms (observed as bright spots) uniformly
dispersed on the PHI support, with no significant evidence
of cluster or nanoparticle formation.

The local coordination environment of nickel in the Ni-
PHI catalysts was investigated using Extended X-ray
Absorption Fine Structure (EXAFS) spectroscopy. Figure 6
shows the Fourier transform of the EXAFS spectra for Ni**-
PHI 0.5% and metallic Ni foil. While the Ni foil exhibits
characteristic peaks corresponding to Ni—-Ni metallic
bonding, the Ni**-PHI 0.5% sample displays a distinct peak
at shorter radial distances, associated with Ni—-N or Ni—C
coordination. These results confirm that nickel atoms are
atomically dispersed within the PHI framework, without the
formation of metallic nickel.
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CO-DRIFTS results
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Figure 6. Kubelka-Munk plots of CO desorption in DRIFT-
FTIR for (a) Ni**-PHI 0.5%, 1%, 2% and 4%.

In the Ni-PHI 0.5% and 1% materials, the bands observed
at 2188 and 2190 cm™, respectively, is attributed to linear
chemisorbed CO on Ni?* sites, while the band at 2135 cm™
corresponds to physiosorbed CO, characterized by weak and
reversible interactions with the surface(14).

Starting from a nickel concentration of 2%, a shift of the
CO bands to lower frequencies is observed, which is
consistent with an increase in n-backdonation and a decrease
in the polarization of the CO molecule. The bands at 2075—
2080 cm™! and 2006 cm™, detected in the Ni-PHI 2% and
4% materials, are likely associated with bridge-bonded CO,
indicating the presence of sites where the molecule is
simultaneously coordinated to two metal atoms

In this same concentration range, a significant reduction
in the intensity of the bands attributed to linear CO
adsorption is observed, suggesting the onset of cluster or
nanoparticle formation(15). The predominance of bridge-
bonded CO bands reinforces this hypothesis. Considering
that DRIFTS peak intensity is proportional to the available
metal or metal oxide surface area, the results indicate that
higher nickel concentrations promote the formation of
aggregated metallic structures, which favor bridge CO
adsorption due to the presence of multiple adjacent metal
centers.

Theoretical Calculations

Initially, a single PHI layer was modelled with a single
atom of Nickel (II) (Ni*") substituted at intralayer sites
(Ni@PHI). To ensure charge neutrality in the periodic 2D
computational model, two Na* ions were removed from the
PHI active sites where Ni** was inserted. A CO molecule
was then positioned at approximately 2 A from the Ni site
to act as a catalytic probe, enabling investigation of the



Congresso Brasileiro de Catalise

surface properties of the catalyst, since CO is
experimentally known to be sensitive to the oxidation state
and coordination environment of metal sites.
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Figure 7. Idealized structure of poly (heptazine imide)
(PHI) single layer: (a) Ni@PHI, (b) Ni-CO@PHI. The
orange area describes the catalytic active site with Ni>*. The
structural configurations of the optimized systems and the
charge density difference in the presence of CO were
investigated to assess the potential n-backdonation effects in
Ni*.

The study analyses the optimized structure and charge
density difference in the presence of CO, revealing that Ni**
promotes strong m-backdonation to the CO molecule, as
indicated by the localized electron density on the carbon
atom.
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Figure 8. DFT geometry-optimized configurations for a
single PHI layer in the following systems: (a) Ni@PHI; and

(b) Ni-CO@PHI. Zoom on the charge density difference
(Ap) is shown for: (c) Ni-CO@PHIL.

Figure 9. Idealized structure of poly (heptazine imide)
(PHI) double layer (2-PHI): interlayer Ni@2PHI.

DFT and DFT+U optimizations were performed to
explore the optimal configuration of a nickel-containing
PHI system in 2-PHI layers. After optimizing the intralayer
and interlayer structures without CO, a CO molecule was
introduced near the nickel site, and further geometry
optimizations were conducted.

Conclusions

This study demonstrated that the combination of CO
adsorption and DRIFT-FTIR is effective for identifying and
characterizing isolated Ni** atoms in PHI. Changes in the
spectral bands with increasing nickel concentration,
indicating enhanced m-backdonation, caused by the
formation of clusters or nanoparticles. These findings were



Congresso Brasileiro de Catalise

supported by DFT calculations, which confirmed the
correlation between electronic structure and adsorption
behavior, highlighting the value of this approach for
investigating metal-doped catalytic materials.
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